This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | ||
| Assertion | ackbij2lem4 | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | |
| 3 | fveq2 | ⊢ ( 𝑎 = 𝐵 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) | |
| 4 | 3 | sseq2d | ⊢ ( 𝑎 = 𝐵 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 6 | 5 | sseq2d | ⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) | |
| 8 | 7 | sseq2d | ⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) | |
| 10 | 9 | sseq2d | ⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) ) |
| 11 | ssidd | ⊢ ( 𝐵 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ) | |
| 12 | 1 2 | ackbij2lem3 | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 14 | sstr2 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) | |
| 15 | 13 14 | syl5com | ⊢ ( ( ( 𝑏 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝑏 ) → ( ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) ) |
| 16 | 4 6 8 10 11 15 | findsg | ⊢ ( ( ( 𝐴 ∈ ω ∧ 𝐵 ∈ ω ) ∧ 𝐵 ⊆ 𝐴 ) → ( rec ( 𝐺 , ∅ ) ‘ 𝐵 ) ⊆ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) |