This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | ||
| Assertion | ackbij2lem2 | ⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | ackbij.g | ⊢ 𝐺 = ( 𝑥 ∈ V ↦ ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) ) | |
| 3 | fveq2 | ⊢ ( 𝑎 = ∅ → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ ∅ ) ) | |
| 5 | 2fveq3 | ⊢ ( 𝑎 = ∅ → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) | |
| 6 | 3 4 5 | f1oeq123d | ⊢ ( 𝑎 = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) ) |
| 7 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 8 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝑏 ) ) | |
| 9 | 2fveq3 | ⊢ ( 𝑎 = 𝑏 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 10 | 7 8 9 | f1oeq123d | ⊢ ( 𝑎 = 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) | |
| 12 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ suc 𝑏 ) ) | |
| 13 | 2fveq3 | ⊢ ( 𝑎 = suc 𝑏 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) | |
| 14 | 11 12 13 | f1oeq123d | ⊢ ( 𝑎 = suc 𝑏 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 15 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) ) | |
| 16 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝑅1 ‘ 𝑎 ) = ( 𝑅1 ‘ 𝐴 ) ) | |
| 17 | 2fveq3 | ⊢ ( 𝑎 = 𝐴 → ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) = ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) | |
| 18 | 15 16 17 | f1oeq123d | ⊢ ( 𝑎 = 𝐴 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑎 ) : ( 𝑅1 ‘ 𝑎 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑎 ) ) ↔ ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) ) |
| 19 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 20 | 0ex | ⊢ ∅ ∈ V | |
| 21 | 20 | rdg0 | ⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ |
| 22 | f1oeq1 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) = ∅ → ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) ) | |
| 23 | 21 22 | ax-mp | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ) |
| 24 | r10 | ⊢ ( 𝑅1 ‘ ∅ ) = ∅ | |
| 25 | 24 | fveq2i | ⊢ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ( card ‘ ∅ ) |
| 26 | card0 | ⊢ ( card ‘ ∅ ) = ∅ | |
| 27 | 25 26 | eqtri | ⊢ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ∅ |
| 28 | f1oeq23 | ⊢ ( ( ( 𝑅1 ‘ ∅ ) = ∅ ∧ ( card ‘ ( 𝑅1 ‘ ∅ ) ) = ∅ ) → ( ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) ) | |
| 29 | 24 27 28 | mp2an | ⊢ ( ∅ : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
| 30 | 23 29 | bitri | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) ↔ ∅ : ∅ –1-1-onto→ ∅ ) |
| 31 | 19 30 | mpbir | ⊢ ( rec ( 𝐺 , ∅ ) ‘ ∅ ) : ( 𝑅1 ‘ ∅ ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ ∅ ) ) |
| 32 | 1 | ackbij1lem17 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
| 33 | 32 | a1i | ⊢ ( 𝑏 ∈ ω → 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ) |
| 34 | r1fin | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ 𝑏 ) ∈ Fin ) | |
| 35 | ficardom | ⊢ ( ( 𝑅1 ‘ 𝑏 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω ) | |
| 36 | 34 35 | syl | ⊢ ( 𝑏 ∈ ω → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω ) |
| 37 | ackbij2lem1 | ⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) | |
| 38 | 36 37 | syl | ⊢ ( 𝑏 ∈ ω → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) |
| 39 | f1ores | ⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ⊆ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) | |
| 40 | 33 38 39 | syl2anc | ⊢ ( 𝑏 ∈ ω → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 41 | 1 | ackbij1b | ⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 42 | 36 41 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 43 | ficardid | ⊢ ( ( 𝑅1 ‘ 𝑏 ) ∈ Fin → ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ ( 𝑅1 ‘ 𝑏 ) ) | |
| 44 | pwen | ⊢ ( ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ ( 𝑅1 ‘ 𝑏 ) → 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) | |
| 45 | carden2b | ⊢ ( 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ≈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 46 | 34 43 44 45 | 4syl | ⊢ ( 𝑏 ∈ ω → ( card ‘ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 47 | 42 46 | eqtrd | ⊢ ( 𝑏 ∈ ω → ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 48 | 47 | f1oeq3d | ⊢ ( 𝑏 ∈ ω → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( 𝐹 “ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ↔ ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 49 | 40 48 | mpbid | ⊢ ( 𝑏 ∈ ω → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 50 | 49 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 51 | f1opw | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 52 | 51 | adantl | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 53 | f1oco | ⊢ ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) : 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ∧ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 54 | 50 52 53 | syl2anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 55 | frsuc | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝑏 ) = ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) ) | |
| 56 | peano2 | ⊢ ( 𝑏 ∈ ω → suc 𝑏 ∈ ω ) | |
| 57 | 56 | fvresd | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ suc 𝑏 ) = ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) ) |
| 58 | fvres | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 59 | 58 | fveq2d | ⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) = ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) ) |
| 60 | fvex | ⊢ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V | |
| 61 | dmeq | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → dom 𝑥 = dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) | |
| 62 | 61 | pweqd | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → 𝒫 dom 𝑥 = 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) |
| 63 | imaeq1 | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝑥 “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) | |
| 64 | 63 | fveq2d | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) |
| 65 | 62 64 | mpteq12dv | ⊢ ( 𝑥 = ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) → ( 𝑦 ∈ 𝒫 dom 𝑥 ↦ ( 𝐹 ‘ ( 𝑥 “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 66 | 60 | dmex | ⊢ dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V |
| 67 | 66 | pwex | ⊢ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V |
| 68 | 67 | mptex | ⊢ ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ∈ V |
| 69 | 65 2 68 | fvmpt | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ∈ V → ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 70 | 60 69 | ax-mp | ⊢ ( 𝐺 ‘ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) |
| 71 | 59 70 | eqtrdi | ⊢ ( 𝑏 ∈ ω → ( 𝐺 ‘ ( ( rec ( 𝐺 , ∅ ) ↾ ω ) ‘ 𝑏 ) ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 72 | 55 57 71 | 3eqtr3d | ⊢ ( 𝑏 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 73 | 72 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 74 | f1odm | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( 𝑅1 ‘ 𝑏 ) ) | |
| 75 | 74 | adantl | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = ( 𝑅1 ‘ 𝑏 ) ) |
| 76 | 75 | pweqd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 77 | 76 | mpteq1d | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ) |
| 78 | fvex | ⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ∈ V | |
| 79 | eqid | ⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) | |
| 80 | 78 79 | fnmpti | ⊢ ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) |
| 81 | 80 | a1i | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 82 | f1ofn | ⊢ ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) | |
| 83 | 54 82 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) Fn 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 84 | f1of | ⊢ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) | |
| 85 | 52 84 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 86 | 85 | ffvelcdmda | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ∈ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) |
| 87 | 86 | fvresd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) |
| 88 | imaeq2 | ⊢ ( 𝑎 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) | |
| 89 | eqid | ⊢ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) = ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) | |
| 90 | 60 | imaex | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ∈ V |
| 91 | 88 89 90 | fvmpt | ⊢ ( 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
| 92 | 91 | adantl | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) |
| 93 | 92 | fveq2d | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
| 94 | 87 93 | eqtrd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
| 95 | fvco3 | ⊢ ( ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) ⟶ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) | |
| 96 | 85 95 | sylan | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ‘ ( ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ‘ 𝑐 ) ) ) |
| 97 | imaeq2 | ⊢ ( 𝑦 = 𝑐 → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) = ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) | |
| 98 | 97 | fveq2d | ⊢ ( 𝑦 = 𝑐 → ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
| 99 | fvex | ⊢ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ∈ V | |
| 100 | 98 79 99 | fvmpt | ⊢ ( 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
| 101 | 100 | adantl | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑐 ) ) ) |
| 102 | 94 96 101 | 3eqtr4rd | ⊢ ( ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∧ 𝑐 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) → ( ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) ‘ 𝑐 ) = ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ‘ 𝑐 ) ) |
| 103 | 81 83 102 | eqfnfvd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
| 104 | 77 103 | eqtrd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( 𝑦 ∈ 𝒫 dom ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) ↦ ( 𝐹 ‘ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑦 ) ) ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
| 105 | 73 104 | eqtrd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) ) |
| 106 | f1oeq1 | ⊢ ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) = ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) | |
| 107 | 105 106 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 108 | nnon | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ On ) | |
| 109 | r1suc | ⊢ ( 𝑏 ∈ On → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) | |
| 110 | 108 109 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ) |
| 111 | 110 | fveq2d | ⊢ ( 𝑏 ∈ ω → ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) |
| 112 | f1oeq23 | ⊢ ( ( ( 𝑅1 ‘ suc 𝑏 ) = 𝒫 ( 𝑅1 ‘ 𝑏 ) ∧ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) = ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) | |
| 113 | 110 111 112 | syl2anc | ⊢ ( 𝑏 ∈ ω → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 114 | 113 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 115 | 107 114 | bitrd | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ↔ ( ( 𝐹 ↾ 𝒫 ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) ∘ ( 𝑎 ∈ 𝒫 ( 𝑅1 ‘ 𝑏 ) ↦ ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) “ 𝑎 ) ) ) : 𝒫 ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ 𝒫 ( 𝑅1 ‘ 𝑏 ) ) ) ) |
| 116 | 54 115 | mpbird | ⊢ ( ( 𝑏 ∈ ω ∧ ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) |
| 117 | 116 | ex | ⊢ ( 𝑏 ∈ ω → ( ( rec ( 𝐺 , ∅ ) ‘ 𝑏 ) : ( 𝑅1 ‘ 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝑏 ) ) → ( rec ( 𝐺 , ∅ ) ‘ suc 𝑏 ) : ( 𝑅1 ‘ suc 𝑏 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ suc 𝑏 ) ) ) ) |
| 118 | 6 10 14 18 31 117 | finds | ⊢ ( 𝐴 ∈ ω → ( rec ( 𝐺 , ∅ ) ‘ 𝐴 ) : ( 𝑅1 ‘ 𝐴 ) –1-1-onto→ ( card ‘ ( 𝑅1 ‘ 𝐴 ) ) ) |