This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cumulative hierarchy of sets function is a function on a limit ordinal. (This weak form of r1fnon avoids ax-rep .) (Contributed by Mario Carneiro, 16-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1funlim | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgfun | ⊢ Fun rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) | |
| 2 | df-r1 | ⊢ 𝑅1 = rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) | |
| 3 | 2 | funeqi | ⊢ ( Fun 𝑅1 ↔ Fun rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ) |
| 4 | 1 3 | mpbir | ⊢ Fun 𝑅1 |
| 5 | rdgdmlim | ⊢ Lim dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) | |
| 6 | 2 | dmeqi | ⊢ dom 𝑅1 = dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) |
| 7 | limeq | ⊢ ( dom 𝑅1 = dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) → ( Lim dom 𝑅1 ↔ Lim dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ) ) | |
| 8 | 6 7 | ax-mp | ⊢ ( Lim dom 𝑅1 ↔ Lim dom rec ( ( 𝑥 ∈ V ↦ 𝒫 𝑥 ) , ∅ ) ) |
| 9 | 5 8 | mpbir | ⊢ Lim dom 𝑅1 |
| 10 | 4 9 | pm3.2i | ⊢ ( Fun 𝑅1 ∧ Lim dom 𝑅1 ) |