This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of hereditarily finite sets is countable. See ackbij2 for an explicit bijection that works without Infinity. See also r1omALT . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1om | ⊢ ( 𝑅1 ‘ ω ) ≈ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex | ⊢ ω ∈ V | |
| 2 | limom | ⊢ Lim ω | |
| 3 | r1lim | ⊢ ( ( ω ∈ V ∧ Lim ω ) → ( 𝑅1 ‘ ω ) = ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( 𝑅1 ‘ ω ) = ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) |
| 5 | r1fnon | ⊢ 𝑅1 Fn On | |
| 6 | fnfun | ⊢ ( 𝑅1 Fn On → Fun 𝑅1 ) | |
| 7 | funiunfv | ⊢ ( Fun 𝑅1 → ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) ) | |
| 8 | 5 6 7 | mp2b | ⊢ ∪ 𝑎 ∈ ω ( 𝑅1 ‘ 𝑎 ) = ∪ ( 𝑅1 “ ω ) |
| 9 | 4 8 | eqtri | ⊢ ( 𝑅1 ‘ ω ) = ∪ ( 𝑅1 “ ω ) |
| 10 | iuneq1 | ⊢ ( 𝑒 = 𝑎 → ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) = ∪ 𝑓 ∈ 𝑎 ( { 𝑓 } × 𝒫 𝑓 ) ) | |
| 11 | sneq | ⊢ ( 𝑓 = 𝑏 → { 𝑓 } = { 𝑏 } ) | |
| 12 | pweq | ⊢ ( 𝑓 = 𝑏 → 𝒫 𝑓 = 𝒫 𝑏 ) | |
| 13 | 11 12 | xpeq12d | ⊢ ( 𝑓 = 𝑏 → ( { 𝑓 } × 𝒫 𝑓 ) = ( { 𝑏 } × 𝒫 𝑏 ) ) |
| 14 | 13 | cbviunv | ⊢ ∪ 𝑓 ∈ 𝑎 ( { 𝑓 } × 𝒫 𝑓 ) = ∪ 𝑏 ∈ 𝑎 ( { 𝑏 } × 𝒫 𝑏 ) |
| 15 | 10 14 | eqtrdi | ⊢ ( 𝑒 = 𝑎 → ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) = ∪ 𝑏 ∈ 𝑎 ( { 𝑏 } × 𝒫 𝑏 ) ) |
| 16 | 15 | fveq2d | ⊢ ( 𝑒 = 𝑎 → ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) = ( card ‘ ∪ 𝑏 ∈ 𝑎 ( { 𝑏 } × 𝒫 𝑏 ) ) ) |
| 17 | 16 | cbvmptv | ⊢ ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) = ( 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑏 ∈ 𝑎 ( { 𝑏 } × 𝒫 𝑏 ) ) ) |
| 18 | dmeq | ⊢ ( 𝑐 = 𝑎 → dom 𝑐 = dom 𝑎 ) | |
| 19 | 18 | pweqd | ⊢ ( 𝑐 = 𝑎 → 𝒫 dom 𝑐 = 𝒫 dom 𝑎 ) |
| 20 | imaeq1 | ⊢ ( 𝑐 = 𝑎 → ( 𝑐 “ 𝑑 ) = ( 𝑎 “ 𝑑 ) ) | |
| 21 | 20 | fveq2d | ⊢ ( 𝑐 = 𝑎 → ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) = ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑑 ) ) ) |
| 22 | 19 21 | mpteq12dv | ⊢ ( 𝑐 = 𝑎 → ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) = ( 𝑑 ∈ 𝒫 dom 𝑎 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑑 ) ) ) ) |
| 23 | imaeq2 | ⊢ ( 𝑑 = 𝑏 → ( 𝑎 “ 𝑑 ) = ( 𝑎 “ 𝑏 ) ) | |
| 24 | 23 | fveq2d | ⊢ ( 𝑑 = 𝑏 → ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑑 ) ) = ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑏 ) ) ) |
| 25 | 24 | cbvmptv | ⊢ ( 𝑑 ∈ 𝒫 dom 𝑎 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑑 ) ) ) = ( 𝑏 ∈ 𝒫 dom 𝑎 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑏 ) ) ) |
| 26 | 22 25 | eqtrdi | ⊢ ( 𝑐 = 𝑎 → ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) = ( 𝑏 ∈ 𝒫 dom 𝑎 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑏 ) ) ) ) |
| 27 | 26 | cbvmptv | ⊢ ( 𝑐 ∈ V ↦ ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) ) = ( 𝑎 ∈ V ↦ ( 𝑏 ∈ 𝒫 dom 𝑎 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑎 “ 𝑏 ) ) ) ) |
| 28 | eqid | ⊢ ∪ ( rec ( ( 𝑐 ∈ V ↦ ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) ) , ∅ ) “ ω ) = ∪ ( rec ( ( 𝑐 ∈ V ↦ ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) ) , ∅ ) “ ω ) | |
| 29 | 17 27 28 | ackbij2 | ⊢ ∪ ( rec ( ( 𝑐 ∈ V ↦ ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) ) , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω |
| 30 | fvex | ⊢ ( 𝑅1 ‘ ω ) ∈ V | |
| 31 | 9 30 | eqeltrri | ⊢ ∪ ( 𝑅1 “ ω ) ∈ V |
| 32 | 31 | f1oen | ⊢ ( ∪ ( rec ( ( 𝑐 ∈ V ↦ ( 𝑑 ∈ 𝒫 dom 𝑐 ↦ ( ( 𝑒 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑓 ∈ 𝑒 ( { 𝑓 } × 𝒫 𝑓 ) ) ) ‘ ( 𝑐 “ 𝑑 ) ) ) ) , ∅ ) “ ω ) : ∪ ( 𝑅1 “ ω ) –1-1-onto→ ω → ∪ ( 𝑅1 “ ω ) ≈ ω ) |
| 33 | 29 32 | ax-mp | ⊢ ∪ ( 𝑅1 “ ω ) ≈ ω |
| 34 | 9 33 | eqbrtri | ⊢ ( 𝑅1 ‘ ω ) ≈ ω |