This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1b | ⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | 1 | ackbij1lem17 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
| 3 | ackbij2lem1 | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ) | |
| 4 | pwexg | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ V ) | |
| 5 | f1imaeng | ⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ∧ 𝒫 𝐴 ∈ V ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 6 | 2 3 4 5 | mp3an2i | ⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) |
| 7 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 8 | pwfi | ⊢ ( 𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ∈ Fin ) |
| 10 | ficardid | ⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ) | |
| 11 | ensym | ⊢ ( ( card ‘ 𝒫 𝐴 ) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) |
| 13 | entr | ⊢ ( ( ( 𝐹 “ 𝒫 𝐴 ) ≈ 𝒫 𝐴 ∧ 𝒫 𝐴 ≈ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) | |
| 14 | 6 12 13 | syl2anc | ⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) |
| 15 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 16 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 17 | 15 16 | eqsstri | ⊢ ω ⊆ Fin |
| 18 | ficardom | ⊢ ( 𝒫 𝐴 ∈ Fin → ( card ‘ 𝒫 𝐴 ) ∈ ω ) | |
| 19 | 9 18 | syl | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ ω ) |
| 20 | 17 19 | sselid | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) ∈ Fin ) |
| 21 | php3 | ⊢ ( ( ( card ‘ 𝒫 𝐴 ) ∈ Fin ∧ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) | |
| 22 | 21 | ex | ⊢ ( ( card ‘ 𝒫 𝐴 ) ∈ Fin → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) ) |
| 23 | 20 22 | syl | ⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) ) ) |
| 24 | sdomnen | ⊢ ( ( 𝐹 “ 𝒫 𝐴 ) ≺ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) | |
| 25 | 23 24 | syl6 | ⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ¬ ( 𝐹 “ 𝒫 𝐴 ) ≈ ( card ‘ 𝒫 𝐴 ) ) ) |
| 26 | 14 25 | mt2d | ⊢ ( 𝐴 ∈ ω → ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ) |
| 27 | fvex | ⊢ ( 𝐹 ‘ 𝑎 ) ∈ V | |
| 28 | ackbij1lem3 | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 29 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) | |
| 30 | 1 | ackbij1lem12 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑎 ⊆ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 31 | 28 29 30 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ) |
| 32 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 33 | peano1 | ⊢ ∅ ∈ ω | |
| 34 | 32 33 | f0cli | ⊢ ( 𝐹 ‘ 𝑎 ) ∈ ω |
| 35 | nnord | ⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ ω → Ord ( 𝐹 ‘ 𝑎 ) ) | |
| 36 | 34 35 | ax-mp | ⊢ Ord ( 𝐹 ‘ 𝑎 ) |
| 37 | 32 33 | f0cli | ⊢ ( 𝐹 ‘ 𝐴 ) ∈ ω |
| 38 | nnord | ⊢ ( ( 𝐹 ‘ 𝐴 ) ∈ ω → Ord ( 𝐹 ‘ 𝐴 ) ) | |
| 39 | 37 38 | ax-mp | ⊢ Ord ( 𝐹 ‘ 𝐴 ) |
| 40 | ordsucsssuc | ⊢ ( ( Ord ( 𝐹 ‘ 𝑎 ) ∧ Ord ( 𝐹 ‘ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) ) | |
| 41 | 36 39 40 | mp2an | ⊢ ( ( 𝐹 ‘ 𝑎 ) ⊆ ( 𝐹 ‘ 𝐴 ) ↔ suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) |
| 42 | 31 41 | sylib | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) ⊆ suc ( 𝐹 ‘ 𝐴 ) ) |
| 43 | 1 | ackbij1lem14 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 44 | 1 | ackbij1lem8 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |
| 45 | 43 44 | eqtr3d | ⊢ ( 𝐴 ∈ ω → suc ( 𝐹 ‘ 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |
| 46 | 45 | adantr | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |
| 47 | 42 46 | sseqtrd | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) ) |
| 48 | sucssel | ⊢ ( ( 𝐹 ‘ 𝑎 ) ∈ V → ( suc ( 𝐹 ‘ 𝑎 ) ⊆ ( card ‘ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) | |
| 49 | 27 47 48 | mpsyl | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) |
| 50 | 49 | ralrimiva | ⊢ ( 𝐴 ∈ ω → ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) |
| 51 | f1fun | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → Fun 𝐹 ) | |
| 52 | 2 51 | ax-mp | ⊢ Fun 𝐹 |
| 53 | f1dm | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → dom 𝐹 = ( 𝒫 ω ∩ Fin ) ) | |
| 54 | 2 53 | ax-mp | ⊢ dom 𝐹 = ( 𝒫 ω ∩ Fin ) |
| 55 | 3 54 | sseqtrrdi | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ dom 𝐹 ) |
| 56 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ 𝒫 𝐴 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) | |
| 57 | 52 55 56 | sylancr | ⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ∀ 𝑎 ∈ 𝒫 𝐴 ( 𝐹 ‘ 𝑎 ) ∈ ( card ‘ 𝒫 𝐴 ) ) ) |
| 58 | 50 57 | mpbird | ⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ) |
| 59 | sspss | ⊢ ( ( 𝐹 “ 𝒫 𝐴 ) ⊆ ( card ‘ 𝒫 𝐴 ) ↔ ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) | |
| 60 | 58 59 | sylib | ⊢ ( 𝐴 ∈ ω → ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) |
| 61 | orel1 | ⊢ ( ¬ ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) → ( ( ( 𝐹 “ 𝒫 𝐴 ) ⊊ ( card ‘ 𝒫 𝐴 ) ∨ ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) ) | |
| 62 | 26 60 61 | sylc | ⊢ ( 𝐴 ∈ ω → ( 𝐹 “ 𝒫 𝐴 ) = ( card ‘ 𝒫 𝐴 ) ) |