This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → 𝑥 ∈ Fin ) | |
| 3 | snfi | ⊢ { 𝑦 } ∈ Fin | |
| 4 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → 𝑥 ∈ 𝒫 ω ) | |
| 5 | 4 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → 𝑥 ⊆ ω ) |
| 6 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 7 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 8 | 6 7 | eqsstri | ⊢ ω ⊆ Fin |
| 9 | 5 8 | sstrdi | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → 𝑥 ⊆ Fin ) |
| 10 | 9 | sselda | ⊢ ( ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ Fin ) |
| 11 | pwfi | ⊢ ( 𝑦 ∈ Fin ↔ 𝒫 𝑦 ∈ Fin ) | |
| 12 | 10 11 | sylib | ⊢ ( ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝒫 𝑦 ∈ Fin ) |
| 13 | xpfi | ⊢ ( ( { 𝑦 } ∈ Fin ∧ 𝒫 𝑦 ∈ Fin ) → ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) | |
| 14 | 3 12 13 | sylancr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 15 | 14 | ralrimiva | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → ∀ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 16 | iunfi | ⊢ ( ( 𝑥 ∈ Fin ∧ ∀ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) → ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) | |
| 17 | 2 15 16 | syl2anc | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin ) |
| 18 | ficardom | ⊢ ( ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ∈ Fin → ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) → ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ∈ ω ) |
| 20 | 1 19 | fmpti | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |