This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij2 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ackbij2lem1 | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom | ⊢ Ord ω | |
| 2 | ordelss | ⊢ ( ( Ord ω ∧ 𝐴 ∈ ω ) → 𝐴 ⊆ ω ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐴 ∈ ω → 𝐴 ⊆ ω ) |
| 4 | 3 | sspwd | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ 𝒫 ω ) |
| 5 | 4 | sselda | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → 𝑎 ∈ 𝒫 ω ) |
| 6 | nnfi | ⊢ ( 𝐴 ∈ ω → 𝐴 ∈ Fin ) | |
| 7 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) | |
| 8 | ssfi | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑎 ⊆ 𝐴 ) → 𝑎 ∈ Fin ) | |
| 9 | 6 7 8 | syl2an | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → 𝑎 ∈ Fin ) |
| 10 | 5 9 | elind | ⊢ ( ( 𝐴 ∈ ω ∧ 𝑎 ∈ 𝒫 𝐴 ) → 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ) |
| 11 | 10 | ex | ⊢ ( 𝐴 ∈ ω → ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ) ) |
| 12 | 11 | ssrdv | ⊢ ( 𝐴 ∈ ω → 𝒫 𝐴 ⊆ ( 𝒫 ω ∩ Fin ) ) |