This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann bijection, part 1b: the bijection from ackbij1 restricts naturally to the powers of particular naturals. (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| Assertion | ackbij1b | |- ( A e. _om -> ( F " ~P A ) = ( card ` ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | |- F = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
|
| 2 | 1 | ackbij1lem17 | |- F : ( ~P _om i^i Fin ) -1-1-> _om |
| 3 | ackbij2lem1 | |- ( A e. _om -> ~P A C_ ( ~P _om i^i Fin ) ) |
|
| 4 | pwexg | |- ( A e. _om -> ~P A e. _V ) |
|
| 5 | f1imaeng | |- ( ( F : ( ~P _om i^i Fin ) -1-1-> _om /\ ~P A C_ ( ~P _om i^i Fin ) /\ ~P A e. _V ) -> ( F " ~P A ) ~~ ~P A ) |
|
| 6 | 2 3 4 5 | mp3an2i | |- ( A e. _om -> ( F " ~P A ) ~~ ~P A ) |
| 7 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 8 | pwfi | |- ( A e. Fin <-> ~P A e. Fin ) |
|
| 9 | 7 8 | sylib | |- ( A e. _om -> ~P A e. Fin ) |
| 10 | ficardid | |- ( ~P A e. Fin -> ( card ` ~P A ) ~~ ~P A ) |
|
| 11 | ensym | |- ( ( card ` ~P A ) ~~ ~P A -> ~P A ~~ ( card ` ~P A ) ) |
|
| 12 | 9 10 11 | 3syl | |- ( A e. _om -> ~P A ~~ ( card ` ~P A ) ) |
| 13 | entr | |- ( ( ( F " ~P A ) ~~ ~P A /\ ~P A ~~ ( card ` ~P A ) ) -> ( F " ~P A ) ~~ ( card ` ~P A ) ) |
|
| 14 | 6 12 13 | syl2anc | |- ( A e. _om -> ( F " ~P A ) ~~ ( card ` ~P A ) ) |
| 15 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 16 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 17 | 15 16 | eqsstri | |- _om C_ Fin |
| 18 | ficardom | |- ( ~P A e. Fin -> ( card ` ~P A ) e. _om ) |
|
| 19 | 9 18 | syl | |- ( A e. _om -> ( card ` ~P A ) e. _om ) |
| 20 | 17 19 | sselid | |- ( A e. _om -> ( card ` ~P A ) e. Fin ) |
| 21 | php3 | |- ( ( ( card ` ~P A ) e. Fin /\ ( F " ~P A ) C. ( card ` ~P A ) ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) |
|
| 22 | 21 | ex | |- ( ( card ` ~P A ) e. Fin -> ( ( F " ~P A ) C. ( card ` ~P A ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) ) |
| 23 | 20 22 | syl | |- ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) -> ( F " ~P A ) ~< ( card ` ~P A ) ) ) |
| 24 | sdomnen | |- ( ( F " ~P A ) ~< ( card ` ~P A ) -> -. ( F " ~P A ) ~~ ( card ` ~P A ) ) |
|
| 25 | 23 24 | syl6 | |- ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) -> -. ( F " ~P A ) ~~ ( card ` ~P A ) ) ) |
| 26 | 14 25 | mt2d | |- ( A e. _om -> -. ( F " ~P A ) C. ( card ` ~P A ) ) |
| 27 | fvex | |- ( F ` a ) e. _V |
|
| 28 | ackbij1lem3 | |- ( A e. _om -> A e. ( ~P _om i^i Fin ) ) |
|
| 29 | elpwi | |- ( a e. ~P A -> a C_ A ) |
|
| 30 | 1 | ackbij1lem12 | |- ( ( A e. ( ~P _om i^i Fin ) /\ a C_ A ) -> ( F ` a ) C_ ( F ` A ) ) |
| 31 | 28 29 30 | syl2an | |- ( ( A e. _om /\ a e. ~P A ) -> ( F ` a ) C_ ( F ` A ) ) |
| 32 | 1 | ackbij1lem10 | |- F : ( ~P _om i^i Fin ) --> _om |
| 33 | peano1 | |- (/) e. _om |
|
| 34 | 32 33 | f0cli | |- ( F ` a ) e. _om |
| 35 | nnord | |- ( ( F ` a ) e. _om -> Ord ( F ` a ) ) |
|
| 36 | 34 35 | ax-mp | |- Ord ( F ` a ) |
| 37 | 32 33 | f0cli | |- ( F ` A ) e. _om |
| 38 | nnord | |- ( ( F ` A ) e. _om -> Ord ( F ` A ) ) |
|
| 39 | 37 38 | ax-mp | |- Ord ( F ` A ) |
| 40 | ordsucsssuc | |- ( ( Ord ( F ` a ) /\ Ord ( F ` A ) ) -> ( ( F ` a ) C_ ( F ` A ) <-> suc ( F ` a ) C_ suc ( F ` A ) ) ) |
|
| 41 | 36 39 40 | mp2an | |- ( ( F ` a ) C_ ( F ` A ) <-> suc ( F ` a ) C_ suc ( F ` A ) ) |
| 42 | 31 41 | sylib | |- ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` a ) C_ suc ( F ` A ) ) |
| 43 | 1 | ackbij1lem14 | |- ( A e. _om -> ( F ` { A } ) = suc ( F ` A ) ) |
| 44 | 1 | ackbij1lem8 | |- ( A e. _om -> ( F ` { A } ) = ( card ` ~P A ) ) |
| 45 | 43 44 | eqtr3d | |- ( A e. _om -> suc ( F ` A ) = ( card ` ~P A ) ) |
| 46 | 45 | adantr | |- ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` A ) = ( card ` ~P A ) ) |
| 47 | 42 46 | sseqtrd | |- ( ( A e. _om /\ a e. ~P A ) -> suc ( F ` a ) C_ ( card ` ~P A ) ) |
| 48 | sucssel | |- ( ( F ` a ) e. _V -> ( suc ( F ` a ) C_ ( card ` ~P A ) -> ( F ` a ) e. ( card ` ~P A ) ) ) |
|
| 49 | 27 47 48 | mpsyl | |- ( ( A e. _om /\ a e. ~P A ) -> ( F ` a ) e. ( card ` ~P A ) ) |
| 50 | 49 | ralrimiva | |- ( A e. _om -> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) |
| 51 | f1fun | |- ( F : ( ~P _om i^i Fin ) -1-1-> _om -> Fun F ) |
|
| 52 | 2 51 | ax-mp | |- Fun F |
| 53 | f1dm | |- ( F : ( ~P _om i^i Fin ) -1-1-> _om -> dom F = ( ~P _om i^i Fin ) ) |
|
| 54 | 2 53 | ax-mp | |- dom F = ( ~P _om i^i Fin ) |
| 55 | 3 54 | sseqtrrdi | |- ( A e. _om -> ~P A C_ dom F ) |
| 56 | funimass4 | |- ( ( Fun F /\ ~P A C_ dom F ) -> ( ( F " ~P A ) C_ ( card ` ~P A ) <-> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) ) |
|
| 57 | 52 55 56 | sylancr | |- ( A e. _om -> ( ( F " ~P A ) C_ ( card ` ~P A ) <-> A. a e. ~P A ( F ` a ) e. ( card ` ~P A ) ) ) |
| 58 | 50 57 | mpbird | |- ( A e. _om -> ( F " ~P A ) C_ ( card ` ~P A ) ) |
| 59 | sspss | |- ( ( F " ~P A ) C_ ( card ` ~P A ) <-> ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) ) |
|
| 60 | 58 59 | sylib | |- ( A e. _om -> ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) ) |
| 61 | orel1 | |- ( -. ( F " ~P A ) C. ( card ` ~P A ) -> ( ( ( F " ~P A ) C. ( card ` ~P A ) \/ ( F " ~P A ) = ( card ` ~P A ) ) -> ( F " ~P A ) = ( card ` ~P A ) ) ) |
|
| 62 | 26 60 61 | sylc | |- ( A e. _om -> ( F " ~P A ) = ( card ` ~P A ) ) |