This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem12 | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 3 | 1 | ackbij1lem11 | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) |
| 4 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ 𝐴 ) ∈ ω ) | |
| 5 | 2 3 4 | sylancr | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ∈ ω ) |
| 6 | difssd | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) | |
| 7 | 1 | ackbij1lem11 | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∖ 𝐴 ) ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 8 | 6 7 | syldan | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 9 | ffvelcdm | ⊢ ( ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ∧ ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ) → ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) | |
| 10 | 2 8 9 | sylancr | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) |
| 11 | nnaword1 | ⊢ ( ( ( 𝐹 ‘ 𝐴 ) ∈ ω ∧ ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ∈ ω ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) | |
| 12 | 5 10 11 | syl2anc | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 13 | disjdif | ⊢ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ | |
| 14 | 13 | a1i | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) |
| 15 | 1 | ackbij1lem9 | ⊢ ( ( 𝐴 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐵 ∖ 𝐴 ) ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐴 ∩ ( 𝐵 ∖ 𝐴 ) ) = ∅ ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 16 | 3 8 14 15 | syl3anc | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) ) |
| 17 | undif | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) | |
| 18 | 17 | biimpi | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 19 | 18 | adantl | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) = 𝐵 ) |
| 20 | 19 | fveq2d | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ ( 𝐴 ∪ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 21 | 16 20 | eqtr3d | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( ( 𝐹 ‘ 𝐴 ) +o ( 𝐹 ‘ ( 𝐵 ∖ 𝐴 ) ) ) = ( 𝐹 ‘ 𝐵 ) ) |
| 22 | 12 21 | sseqtrd | ⊢ ( ( 𝐵 ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐹 ‘ 𝐴 ) ⊆ ( 𝐹 ‘ 𝐵 ) ) |