This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem14 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | 1 | ackbij1lem8 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |
| 3 | pweq | ⊢ ( 𝑎 = ∅ → 𝒫 𝑎 = 𝒫 ∅ ) | |
| 4 | 3 | fveq2d | ⊢ ( 𝑎 = ∅ → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 ∅ ) ) |
| 5 | fveq2 | ⊢ ( 𝑎 = ∅ → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ∅ ) ) | |
| 6 | suceq | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ ∅ ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ ∅ ) ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑎 = ∅ → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ ∅ ) ) |
| 8 | 4 7 | eqeq12d | ⊢ ( 𝑎 = ∅ → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 ∅ ) = suc ( 𝐹 ‘ ∅ ) ) ) |
| 9 | pweq | ⊢ ( 𝑎 = 𝑏 → 𝒫 𝑎 = 𝒫 𝑏 ) | |
| 10 | 9 | fveq2d | ⊢ ( 𝑎 = 𝑏 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝑏 ) ) |
| 11 | fveq2 | ⊢ ( 𝑎 = 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) ) | |
| 12 | suceq | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝑏 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝑏 ) ) | |
| 13 | 11 12 | syl | ⊢ ( 𝑎 = 𝑏 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝑏 ) ) |
| 14 | 10 13 | eqeq12d | ⊢ ( 𝑎 = 𝑏 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) ) |
| 15 | pweq | ⊢ ( 𝑎 = suc 𝑏 → 𝒫 𝑎 = 𝒫 suc 𝑏 ) | |
| 16 | 15 | fveq2d | ⊢ ( 𝑎 = suc 𝑏 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 suc 𝑏 ) ) |
| 17 | fveq2 | ⊢ ( 𝑎 = suc 𝑏 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ suc 𝑏 ) ) | |
| 18 | suceq | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ suc 𝑏 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) | |
| 19 | 17 18 | syl | ⊢ ( 𝑎 = suc 𝑏 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) |
| 20 | 16 19 | eqeq12d | ⊢ ( 𝑎 = suc 𝑏 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) ) |
| 21 | pweq | ⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) | |
| 22 | 21 | fveq2d | ⊢ ( 𝑎 = 𝐴 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝐴 ) ) |
| 23 | fveq2 | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) ) | |
| 24 | suceq | ⊢ ( ( 𝐹 ‘ 𝑎 ) = ( 𝐹 ‘ 𝐴 ) → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝐴 ) ) | |
| 25 | 23 24 | syl | ⊢ ( 𝑎 = 𝐴 → suc ( 𝐹 ‘ 𝑎 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 26 | 22 25 | eqeq12d | ⊢ ( 𝑎 = 𝐴 → ( ( card ‘ 𝒫 𝑎 ) = suc ( 𝐹 ‘ 𝑎 ) ↔ ( card ‘ 𝒫 𝐴 ) = suc ( 𝐹 ‘ 𝐴 ) ) ) |
| 27 | df-1o | ⊢ 1o = suc ∅ | |
| 28 | pw0 | ⊢ 𝒫 ∅ = { ∅ } | |
| 29 | 28 | fveq2i | ⊢ ( card ‘ 𝒫 ∅ ) = ( card ‘ { ∅ } ) |
| 30 | 0ex | ⊢ ∅ ∈ V | |
| 31 | cardsn | ⊢ ( ∅ ∈ V → ( card ‘ { ∅ } ) = 1o ) | |
| 32 | 30 31 | ax-mp | ⊢ ( card ‘ { ∅ } ) = 1o |
| 33 | 29 32 | eqtri | ⊢ ( card ‘ 𝒫 ∅ ) = 1o |
| 34 | 1 | ackbij1lem13 | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 35 | suceq | ⊢ ( ( 𝐹 ‘ ∅ ) = ∅ → suc ( 𝐹 ‘ ∅ ) = suc ∅ ) | |
| 36 | 34 35 | ax-mp | ⊢ suc ( 𝐹 ‘ ∅ ) = suc ∅ |
| 37 | 27 33 36 | 3eqtr4i | ⊢ ( card ‘ 𝒫 ∅ ) = suc ( 𝐹 ‘ ∅ ) |
| 38 | oveq2 | ⊢ ( ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) → ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) | |
| 39 | 38 | adantl | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) |
| 40 | ackbij1lem5 | ⊢ ( 𝑏 ∈ ω → ( card ‘ 𝒫 suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) ) | |
| 41 | 40 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( card ‘ 𝒫 𝑏 ) ) ) |
| 42 | df-suc | ⊢ suc 𝑏 = ( 𝑏 ∪ { 𝑏 } ) | |
| 43 | 42 | equncomi | ⊢ suc 𝑏 = ( { 𝑏 } ∪ 𝑏 ) |
| 44 | 43 | fveq2i | ⊢ ( 𝐹 ‘ suc 𝑏 ) = ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) |
| 45 | ackbij1lem4 | ⊢ ( 𝑏 ∈ ω → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 46 | 45 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ) |
| 47 | ackbij1lem3 | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 48 | 47 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ) |
| 49 | incom | ⊢ ( { 𝑏 } ∩ 𝑏 ) = ( 𝑏 ∩ { 𝑏 } ) | |
| 50 | nnord | ⊢ ( 𝑏 ∈ ω → Ord 𝑏 ) | |
| 51 | orddisj | ⊢ ( Ord 𝑏 → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) | |
| 52 | 50 51 | syl | ⊢ ( 𝑏 ∈ ω → ( 𝑏 ∩ { 𝑏 } ) = ∅ ) |
| 53 | 49 52 | eqtrid | ⊢ ( 𝑏 ∈ ω → ( { 𝑏 } ∩ 𝑏 ) = ∅ ) |
| 54 | 53 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( { 𝑏 } ∩ 𝑏 ) = ∅ ) |
| 55 | 1 | ackbij1lem9 | ⊢ ( ( { 𝑏 } ∈ ( 𝒫 ω ∩ Fin ) ∧ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ∧ ( { 𝑏 } ∩ 𝑏 ) = ∅ ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 56 | 46 48 54 55 | syl3anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 57 | 1 | ackbij1lem8 | ⊢ ( 𝑏 ∈ ω → ( 𝐹 ‘ { 𝑏 } ) = ( card ‘ 𝒫 𝑏 ) ) |
| 58 | 57 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ { 𝑏 } ) = ( card ‘ 𝒫 𝑏 ) ) |
| 59 | 58 | oveq1d | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( 𝐹 ‘ { 𝑏 } ) +o ( 𝐹 ‘ 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 60 | 56 59 | eqtrd | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ ( { 𝑏 } ∪ 𝑏 ) ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 61 | 44 60 | eqtrid | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 62 | suceq | ⊢ ( ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) | |
| 63 | 61 62 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 64 | nnfi | ⊢ ( 𝑏 ∈ ω → 𝑏 ∈ Fin ) | |
| 65 | pwfi | ⊢ ( 𝑏 ∈ Fin ↔ 𝒫 𝑏 ∈ Fin ) | |
| 66 | 64 65 | sylib | ⊢ ( 𝑏 ∈ ω → 𝒫 𝑏 ∈ Fin ) |
| 67 | 66 | adantr | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → 𝒫 𝑏 ∈ Fin ) |
| 68 | ficardom | ⊢ ( 𝒫 𝑏 ∈ Fin → ( card ‘ 𝒫 𝑏 ) ∈ ω ) | |
| 69 | 67 68 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 𝑏 ) ∈ ω ) |
| 70 | 1 | ackbij1lem10 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω |
| 71 | 70 | ffvelcdmi | ⊢ ( 𝑏 ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ 𝑏 ) ∈ ω ) |
| 72 | 48 71 | syl | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( 𝐹 ‘ 𝑏 ) ∈ ω ) |
| 73 | nnasuc | ⊢ ( ( ( card ‘ 𝒫 𝑏 ) ∈ ω ∧ ( 𝐹 ‘ 𝑏 ) ∈ ω ) → ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) | |
| 74 | 69 72 73 | syl2anc | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) = suc ( ( card ‘ 𝒫 𝑏 ) +o ( 𝐹 ‘ 𝑏 ) ) ) |
| 75 | 63 74 | eqtr4d | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → suc ( 𝐹 ‘ suc 𝑏 ) = ( ( card ‘ 𝒫 𝑏 ) +o suc ( 𝐹 ‘ 𝑏 ) ) ) |
| 76 | 39 41 75 | 3eqtr4d | ⊢ ( ( 𝑏 ∈ ω ∧ ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) ) → ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) |
| 77 | 76 | ex | ⊢ ( 𝑏 ∈ ω → ( ( card ‘ 𝒫 𝑏 ) = suc ( 𝐹 ‘ 𝑏 ) → ( card ‘ 𝒫 suc 𝑏 ) = suc ( 𝐹 ‘ suc 𝑏 ) ) ) |
| 78 | 8 14 20 26 37 77 | finds | ⊢ ( 𝐴 ∈ ω → ( card ‘ 𝒫 𝐴 ) = suc ( 𝐹 ‘ 𝐴 ) ) |
| 79 | 2 78 | eqtrd | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = suc ( 𝐹 ‘ 𝐴 ) ) |