This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for ackbij1 . (Contributed by Stefan O'Rear, 19-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1lem8 | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | sneq | ⊢ ( 𝑎 = 𝐴 → { 𝑎 } = { 𝐴 } ) | |
| 3 | 2 | fveq2d | ⊢ ( 𝑎 = 𝐴 → ( 𝐹 ‘ { 𝑎 } ) = ( 𝐹 ‘ { 𝐴 } ) ) |
| 4 | pweq | ⊢ ( 𝑎 = 𝐴 → 𝒫 𝑎 = 𝒫 𝐴 ) | |
| 5 | 4 | fveq2d | ⊢ ( 𝑎 = 𝐴 → ( card ‘ 𝒫 𝑎 ) = ( card ‘ 𝒫 𝐴 ) ) |
| 6 | 3 5 | eqeq12d | ⊢ ( 𝑎 = 𝐴 → ( ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) ↔ ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) ) |
| 7 | ackbij1lem4 | ⊢ ( 𝑎 ∈ ω → { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 8 | 1 | ackbij1lem7 | ⊢ ( { 𝑎 } ∈ ( 𝒫 ω ∩ Fin ) → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 9 | 7 8 | syl | ⊢ ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 10 | vex | ⊢ 𝑎 ∈ V | |
| 11 | sneq | ⊢ ( 𝑦 = 𝑎 → { 𝑦 } = { 𝑎 } ) | |
| 12 | pweq | ⊢ ( 𝑦 = 𝑎 → 𝒫 𝑦 = 𝒫 𝑎 ) | |
| 13 | 11 12 | xpeq12d | ⊢ ( 𝑦 = 𝑎 → ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 ) ) |
| 14 | 10 13 | iunxsn | ⊢ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) = ( { 𝑎 } × 𝒫 𝑎 ) |
| 15 | 14 | fveq2i | ⊢ ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) |
| 16 | vpwex | ⊢ 𝒫 𝑎 ∈ V | |
| 17 | xpsnen2g | ⊢ ( ( 𝑎 ∈ V ∧ 𝒫 𝑎 ∈ V ) → ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 ) | |
| 18 | 10 16 17 | mp2an | ⊢ ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 |
| 19 | carden2b | ⊢ ( ( { 𝑎 } × 𝒫 𝑎 ) ≈ 𝒫 𝑎 → ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 ) ) | |
| 20 | 18 19 | ax-mp | ⊢ ( card ‘ ( { 𝑎 } × 𝒫 𝑎 ) ) = ( card ‘ 𝒫 𝑎 ) |
| 21 | 15 20 | eqtri | ⊢ ( card ‘ ∪ 𝑦 ∈ { 𝑎 } ( { 𝑦 } × 𝒫 𝑦 ) ) = ( card ‘ 𝒫 𝑎 ) |
| 22 | 9 21 | eqtrdi | ⊢ ( 𝑎 ∈ ω → ( 𝐹 ‘ { 𝑎 } ) = ( card ‘ 𝒫 𝑎 ) ) |
| 23 | 6 22 | vtoclga | ⊢ ( 𝐴 ∈ ω → ( 𝐹 ‘ { 𝐴 } ) = ( card ‘ 𝒫 𝐴 ) ) |