This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ndcctbss.1 | ⊢ 𝐽 = ( topGen ‘ 𝐵 ) | |
| 2ndcctbss.2 | ⊢ 𝑆 = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) } | ||
| Assertion | 2ndcctbss | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndcctbss.1 | ⊢ 𝐽 = ( topGen ‘ 𝐵 ) | |
| 2 | 2ndcctbss.2 | ⊢ 𝑆 = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) } | |
| 3 | simpr | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → 𝐽 ∈ 2ndω ) | |
| 4 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑐 ∈ TopBases ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) | |
| 5 | 3 4 | sylib | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑐 ∈ TopBases ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) |
| 6 | vex | ⊢ 𝑐 ∈ V | |
| 7 | 6 6 | xpex | ⊢ ( 𝑐 × 𝑐 ) ∈ V |
| 8 | 3simpa | ⊢ ( ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) → ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ) ) | |
| 9 | 8 | ssopab2i | ⊢ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) } ⊆ { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ) } |
| 10 | df-xp | ⊢ ( 𝑐 × 𝑐 ) = { 〈 𝑢 , 𝑣 〉 ∣ ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ) } | |
| 11 | 9 2 10 | 3sstr4i | ⊢ 𝑆 ⊆ ( 𝑐 × 𝑐 ) |
| 12 | ssdomg | ⊢ ( ( 𝑐 × 𝑐 ) ∈ V → ( 𝑆 ⊆ ( 𝑐 × 𝑐 ) → 𝑆 ≼ ( 𝑐 × 𝑐 ) ) ) | |
| 13 | 7 11 12 | mp2 | ⊢ 𝑆 ≼ ( 𝑐 × 𝑐 ) |
| 14 | 6 | xpdom1 | ⊢ ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ( ω × 𝑐 ) ) |
| 15 | omex | ⊢ ω ∈ V | |
| 16 | 15 | xpdom2 | ⊢ ( 𝑐 ≼ ω → ( ω × 𝑐 ) ≼ ( ω × ω ) ) |
| 17 | domtr | ⊢ ( ( ( 𝑐 × 𝑐 ) ≼ ( ω × 𝑐 ) ∧ ( ω × 𝑐 ) ≼ ( ω × ω ) ) → ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) ) | |
| 18 | 14 16 17 | syl2anc | ⊢ ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) ) |
| 19 | xpomen | ⊢ ( ω × ω ) ≈ ω | |
| 20 | domentr | ⊢ ( ( ( 𝑐 × 𝑐 ) ≼ ( ω × ω ) ∧ ( ω × ω ) ≈ ω ) → ( 𝑐 × 𝑐 ) ≼ ω ) | |
| 21 | 18 19 20 | sylancl | ⊢ ( 𝑐 ≼ ω → ( 𝑐 × 𝑐 ) ≼ ω ) |
| 22 | 21 | adantr | ⊢ ( ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) → ( 𝑐 × 𝑐 ) ≼ ω ) |
| 23 | 22 | ad2antll | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( 𝑐 × 𝑐 ) ≼ ω ) |
| 24 | domtr | ⊢ ( ( 𝑆 ≼ ( 𝑐 × 𝑐 ) ∧ ( 𝑐 × 𝑐 ) ≼ ω ) → 𝑆 ≼ ω ) | |
| 25 | 13 23 24 | sylancr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → 𝑆 ≼ ω ) |
| 26 | 2 | relopabiv | ⊢ Rel 𝑆 |
| 27 | simpr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) | |
| 28 | 1st2nd | ⊢ ( ( Rel 𝑆 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) | |
| 29 | 26 27 28 | sylancr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 30 | 29 27 | eqeltrrd | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝑆 ) |
| 31 | df-br | ⊢ ( ( 1st ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑥 ) ↔ 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝑆 ) | |
| 32 | fvex | ⊢ ( 1st ‘ 𝑥 ) ∈ V | |
| 33 | fvex | ⊢ ( 2nd ‘ 𝑥 ) ∈ V | |
| 34 | simpl | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → 𝑢 = ( 1st ‘ 𝑥 ) ) | |
| 35 | 34 | eleq1d | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → ( 𝑢 ∈ 𝑐 ↔ ( 1st ‘ 𝑥 ) ∈ 𝑐 ) ) |
| 36 | simpr | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → 𝑣 = ( 2nd ‘ 𝑥 ) ) | |
| 37 | 36 | eleq1d | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → ( 𝑣 ∈ 𝑐 ↔ ( 2nd ‘ 𝑥 ) ∈ 𝑐 ) ) |
| 38 | sseq1 | ⊢ ( 𝑢 = ( 1st ‘ 𝑥 ) → ( 𝑢 ⊆ 𝑤 ↔ ( 1st ‘ 𝑥 ) ⊆ 𝑤 ) ) | |
| 39 | sseq2 | ⊢ ( 𝑣 = ( 2nd ‘ 𝑥 ) → ( 𝑤 ⊆ 𝑣 ↔ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) | |
| 40 | 38 39 | bi2anan9 | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → ( ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ↔ ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 41 | 40 | rexbidv | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ↔ ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 42 | 35 37 41 | 3anbi123d | ⊢ ( ( 𝑢 = ( 1st ‘ 𝑥 ) ∧ 𝑣 = ( 2nd ‘ 𝑥 ) ) → ( ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) ↔ ( ( 1st ‘ 𝑥 ) ∈ 𝑐 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) ) ) |
| 43 | 32 33 42 2 | braba | ⊢ ( ( 1st ‘ 𝑥 ) 𝑆 ( 2nd ‘ 𝑥 ) ↔ ( ( 1st ‘ 𝑥 ) ∈ 𝑐 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 44 | 31 43 | bitr3i | ⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝑆 ↔ ( ( 1st ‘ 𝑥 ) ∈ 𝑐 ∧ ( 2nd ‘ 𝑥 ) ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 45 | 44 | simp3bi | ⊢ ( 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ∈ 𝑆 → ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) |
| 46 | 30 45 | syl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑤 ∈ 𝐵 ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) |
| 47 | fvi | ⊢ ( 𝐵 ∈ TopBases → ( I ‘ 𝐵 ) = 𝐵 ) | |
| 48 | 47 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ( I ‘ 𝐵 ) = 𝐵 ) |
| 49 | 46 48 | rexeqtrrdv | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) |
| 50 | 49 | ralrimiva | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∀ 𝑥 ∈ 𝑆 ∃ 𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) |
| 51 | fvex | ⊢ ( I ‘ 𝐵 ) ∈ V | |
| 52 | sseq2 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ↔ ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ) ) | |
| 53 | sseq1 | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) | |
| 54 | 52 53 | anbi12d | ⊢ ( 𝑤 = ( 𝑓 ‘ 𝑥 ) → ( ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ↔ ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 55 | 51 54 | axcc4dom | ⊢ ( ( 𝑆 ≼ ω ∧ ∀ 𝑥 ∈ 𝑆 ∃ 𝑤 ∈ ( I ‘ 𝐵 ) ( ( 1st ‘ 𝑥 ) ⊆ 𝑤 ∧ 𝑤 ⊆ ( 2nd ‘ 𝑥 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 56 | 25 50 55 | syl2anc | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) |
| 57 | 47 | ad2antrr | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( I ‘ 𝐵 ) = 𝐵 ) |
| 58 | 57 | feq3d | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ↔ 𝑓 : 𝑆 ⟶ 𝐵 ) ) |
| 59 | 58 | anbi1d | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ↔ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) ) |
| 60 | 2ndctop | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top ) | |
| 61 | 60 | adantl | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → 𝐽 ∈ Top ) |
| 62 | 61 | ad2antrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝐽 ∈ Top ) |
| 63 | frn | ⊢ ( 𝑓 : 𝑆 ⟶ 𝐵 → ran 𝑓 ⊆ 𝐵 ) | |
| 64 | 63 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ran 𝑓 ⊆ 𝐵 ) |
| 65 | bastg | ⊢ ( 𝐵 ∈ TopBases → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) | |
| 66 | 65 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 67 | 66 1 | sseqtrrdi | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝐵 ⊆ 𝐽 ) |
| 68 | 64 67 | sstrd | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ran 𝑓 ⊆ 𝐽 ) |
| 69 | simprrl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → 𝑜 ∈ 𝐽 ) | |
| 70 | simprr | ⊢ ( ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) → ( topGen ‘ 𝑐 ) = 𝐽 ) | |
| 71 | 70 | ad2antlr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → ( topGen ‘ 𝑐 ) = 𝐽 ) |
| 72 | 69 71 | eleqtrrd | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → 𝑜 ∈ ( topGen ‘ 𝑐 ) ) |
| 73 | simprrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → 𝑡 ∈ 𝑜 ) | |
| 74 | tg2 | ⊢ ( ( 𝑜 ∈ ( topGen ‘ 𝑐 ) ∧ 𝑡 ∈ 𝑜 ) → ∃ 𝑑 ∈ 𝑐 ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) | |
| 75 | 72 73 74 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → ∃ 𝑑 ∈ 𝑐 ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) |
| 76 | bastg | ⊢ ( 𝑐 ∈ TopBases → 𝑐 ⊆ ( topGen ‘ 𝑐 ) ) | |
| 77 | 76 | ad2antrl | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝑐 ) ) |
| 78 | 77 | ad2antrr | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝑐 ) ) |
| 79 | 1 | eqeq2i | ⊢ ( ( topGen ‘ 𝑐 ) = 𝐽 ↔ ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) ) |
| 80 | 79 | biimpi | ⊢ ( ( topGen ‘ 𝑐 ) = 𝐽 → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) ) |
| 81 | 80 | adantl | ⊢ ( ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) ) |
| 82 | 81 | ad2antll | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) ) |
| 83 | 82 | ad2antrr | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → ( topGen ‘ 𝑐 ) = ( topGen ‘ 𝐵 ) ) |
| 84 | 78 83 | sseqtrd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑐 ⊆ ( topGen ‘ 𝐵 ) ) |
| 85 | simprl | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑑 ∈ 𝑐 ) | |
| 86 | 84 85 | sseldd | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑑 ∈ ( topGen ‘ 𝐵 ) ) |
| 87 | simprrl | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑡 ∈ 𝑑 ) | |
| 88 | tg2 | ⊢ ( ( 𝑑 ∈ ( topGen ‘ 𝐵 ) ∧ 𝑡 ∈ 𝑑 ) → ∃ 𝑚 ∈ 𝐵 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) | |
| 89 | 86 87 88 | syl2anc | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → ∃ 𝑚 ∈ 𝐵 ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) |
| 90 | 65 | ad3antrrr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 91 | 90 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝐵 ) ) |
| 92 | 71 | ad2antrr | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → ( topGen ‘ 𝑐 ) = 𝐽 ) |
| 93 | 92 1 | eqtr2di | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → ( topGen ‘ 𝐵 ) = ( topGen ‘ 𝑐 ) ) |
| 94 | 91 93 | sseqtrd | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝐵 ⊆ ( topGen ‘ 𝑐 ) ) |
| 95 | simprl | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝑚 ∈ 𝐵 ) | |
| 96 | 94 95 | sseldd | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝑚 ∈ ( topGen ‘ 𝑐 ) ) |
| 97 | simprrl | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝑡 ∈ 𝑚 ) | |
| 98 | tg2 | ⊢ ( ( 𝑚 ∈ ( topGen ‘ 𝑐 ) ∧ 𝑡 ∈ 𝑚 ) → ∃ 𝑛 ∈ 𝑐 ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) | |
| 99 | 96 97 98 | syl2anc | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → ∃ 𝑛 ∈ 𝑐 ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) |
| 100 | ffn | ⊢ ( 𝑓 : 𝑆 ⟶ 𝐵 → 𝑓 Fn 𝑆 ) | |
| 101 | 100 | ad2antrr | ⊢ ( ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) → 𝑓 Fn 𝑆 ) |
| 102 | 101 | ad2antlr | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → 𝑓 Fn 𝑆 ) |
| 103 | 102 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑓 Fn 𝑆 ) |
| 104 | simprl | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑛 ∈ 𝑐 ) | |
| 105 | 85 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑑 ∈ 𝑐 ) |
| 106 | simplrl | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑚 ∈ 𝐵 ) | |
| 107 | simprrr | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑛 ⊆ 𝑚 ) | |
| 108 | simprr | ⊢ ( ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) → 𝑚 ⊆ 𝑑 ) | |
| 109 | 108 | ad2antlr | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑚 ⊆ 𝑑 ) |
| 110 | sseq2 | ⊢ ( 𝑤 = 𝑚 → ( 𝑛 ⊆ 𝑤 ↔ 𝑛 ⊆ 𝑚 ) ) | |
| 111 | sseq1 | ⊢ ( 𝑤 = 𝑚 → ( 𝑤 ⊆ 𝑑 ↔ 𝑚 ⊆ 𝑑 ) ) | |
| 112 | 110 111 | anbi12d | ⊢ ( 𝑤 = 𝑚 → ( ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ↔ ( 𝑛 ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) |
| 113 | 112 | rspcev | ⊢ ( ( 𝑚 ∈ 𝐵 ∧ ( 𝑛 ⊆ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) |
| 114 | 106 107 109 113 | syl12anc | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) |
| 115 | df-br | ⊢ ( 𝑛 𝑆 𝑑 ↔ 〈 𝑛 , 𝑑 〉 ∈ 𝑆 ) | |
| 116 | vex | ⊢ 𝑛 ∈ V | |
| 117 | vex | ⊢ 𝑑 ∈ V | |
| 118 | simpl | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → 𝑢 = 𝑛 ) | |
| 119 | 118 | eleq1d | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → ( 𝑢 ∈ 𝑐 ↔ 𝑛 ∈ 𝑐 ) ) |
| 120 | simpr | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → 𝑣 = 𝑑 ) | |
| 121 | 120 | eleq1d | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → ( 𝑣 ∈ 𝑐 ↔ 𝑑 ∈ 𝑐 ) ) |
| 122 | sseq1 | ⊢ ( 𝑢 = 𝑛 → ( 𝑢 ⊆ 𝑤 ↔ 𝑛 ⊆ 𝑤 ) ) | |
| 123 | sseq2 | ⊢ ( 𝑣 = 𝑑 → ( 𝑤 ⊆ 𝑣 ↔ 𝑤 ⊆ 𝑑 ) ) | |
| 124 | 122 123 | bi2anan9 | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → ( ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ↔ ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) ) |
| 125 | 124 | rexbidv | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → ( ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ↔ ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) ) |
| 126 | 119 121 125 | 3anbi123d | ⊢ ( ( 𝑢 = 𝑛 ∧ 𝑣 = 𝑑 ) → ( ( 𝑢 ∈ 𝑐 ∧ 𝑣 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑢 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑣 ) ) ↔ ( 𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) ) ) |
| 127 | 116 117 126 2 | braba | ⊢ ( 𝑛 𝑆 𝑑 ↔ ( 𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) ) |
| 128 | 115 127 | bitr3i | ⊢ ( 〈 𝑛 , 𝑑 〉 ∈ 𝑆 ↔ ( 𝑛 ∈ 𝑐 ∧ 𝑑 ∈ 𝑐 ∧ ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) ) |
| 129 | 104 105 114 128 | syl3anbrc | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 〈 𝑛 , 𝑑 〉 ∈ 𝑆 ) |
| 130 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑆 ∧ 〈 𝑛 , 𝑑 〉 ∈ 𝑆 ) → ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∈ ran 𝑓 ) | |
| 131 | 103 129 130 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∈ ran 𝑓 ) |
| 132 | simprl | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑛 ∈ 𝑐 ) | |
| 133 | simplll | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑑 ∈ 𝑐 ) | |
| 134 | simplrl | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑚 ∈ 𝐵 ) | |
| 135 | simprrr | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑛 ⊆ 𝑚 ) | |
| 136 | 108 | ad2antlr | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 𝑚 ⊆ 𝑑 ) |
| 137 | 134 135 136 113 | syl12anc | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ∃ 𝑤 ∈ 𝐵 ( 𝑛 ⊆ 𝑤 ∧ 𝑤 ⊆ 𝑑 ) ) |
| 138 | 132 133 137 128 | syl3anbrc | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → 〈 𝑛 , 𝑑 〉 ∈ 𝑆 ) |
| 139 | fveq2 | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( 1st ‘ 𝑥 ) = ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ) | |
| 140 | fveq2 | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( 𝑓 ‘ 𝑥 ) = ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) | |
| 141 | 139 140 | sseq12d | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ↔ ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) ) |
| 142 | fveq2 | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( 2nd ‘ 𝑥 ) = ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) | |
| 143 | 140 142 | sseq12d | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ↔ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) ) |
| 144 | 141 143 | anbi12d | ⊢ ( 𝑥 = 〈 𝑛 , 𝑑 〉 → ( ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ↔ ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) ) ) |
| 145 | 144 | rspcv | ⊢ ( 〈 𝑛 , 𝑑 〉 ∈ 𝑆 → ( ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) → ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) ) ) |
| 146 | 138 145 | syl | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) → ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) ) ) |
| 147 | 116 117 | op1st | ⊢ ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) = 𝑛 |
| 148 | 147 | sseq1i | ⊢ ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ↔ 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) |
| 149 | 116 117 | op2nd | ⊢ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) = 𝑑 |
| 150 | 149 | sseq2i | ⊢ ( ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ↔ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) |
| 151 | 148 150 | anbi12i | ⊢ ( ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) ↔ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) |
| 152 | simprl | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) | |
| 153 | simprl | ⊢ ( ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) → 𝑡 ∈ 𝑛 ) | |
| 154 | 153 | ad2antlr | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → 𝑡 ∈ 𝑛 ) |
| 155 | 152 154 | sseldd | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) |
| 156 | simprr | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) | |
| 157 | simplrr | ⊢ ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → 𝑑 ⊆ 𝑜 ) | |
| 158 | 157 | ad2antrr | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → 𝑑 ⊆ 𝑜 ) |
| 159 | 156 158 | sstrd | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) |
| 160 | 155 159 | jca | ⊢ ( ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) ∧ ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) |
| 161 | 160 | ex | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( ( 𝑛 ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑑 ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) |
| 162 | 151 161 | biimtrid | ⊢ ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( ( ( 1st ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ ( 2nd ‘ 〈 𝑛 , 𝑑 〉 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) |
| 163 | 146 162 | syldc | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) → ( ( ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) |
| 164 | 163 | exp4c | ⊢ ( ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) → ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) → ( ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) → ( ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) ) ) |
| 165 | 164 | ad2antlr | ⊢ ( ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) → ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) → ( ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) → ( ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) ) ) |
| 166 | 165 | adantl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → ( ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) → ( ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) → ( ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) ) ) |
| 167 | 166 | imp41 | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) |
| 168 | eleq2 | ⊢ ( 𝑏 = ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) → ( 𝑡 ∈ 𝑏 ↔ 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ) ) | |
| 169 | sseq1 | ⊢ ( 𝑏 = ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) → ( 𝑏 ⊆ 𝑜 ↔ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) | |
| 170 | 168 169 | anbi12d | ⊢ ( 𝑏 = ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) → ( ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ↔ ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) ) |
| 171 | 170 | rspcev | ⊢ ( ( ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∈ ran 𝑓 ∧ ( 𝑡 ∈ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ∧ ( 𝑓 ‘ 〈 𝑛 , 𝑑 〉 ) ⊆ 𝑜 ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 172 | 131 167 171 | syl2anc | ⊢ ( ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) ∧ ( 𝑛 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑛 ∧ 𝑛 ⊆ 𝑚 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 173 | 99 172 | rexlimddv | ⊢ ( ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) ∧ ( 𝑚 ∈ 𝐵 ∧ ( 𝑡 ∈ 𝑚 ∧ 𝑚 ⊆ 𝑑 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 174 | 89 173 | rexlimddv | ⊢ ( ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) ∧ ( 𝑑 ∈ 𝑐 ∧ ( 𝑡 ∈ 𝑑 ∧ 𝑑 ⊆ 𝑜 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 175 | 75 174 | rexlimddv | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ∧ ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) ) ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 176 | 175 | expr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ( ( 𝑜 ∈ 𝐽 ∧ 𝑡 ∈ 𝑜 ) → ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) ) |
| 177 | 176 | ralrimivv | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ∀ 𝑜 ∈ 𝐽 ∀ 𝑡 ∈ 𝑜 ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) |
| 178 | basgen2 | ⊢ ( ( 𝐽 ∈ Top ∧ ran 𝑓 ⊆ 𝐽 ∧ ∀ 𝑜 ∈ 𝐽 ∀ 𝑡 ∈ 𝑜 ∃ 𝑏 ∈ ran 𝑓 ( 𝑡 ∈ 𝑏 ∧ 𝑏 ⊆ 𝑜 ) ) → ( topGen ‘ ran 𝑓 ) = 𝐽 ) | |
| 179 | 62 68 177 178 | syl3anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ( topGen ‘ ran 𝑓 ) = 𝐽 ) |
| 180 | 179 62 | eqeltrd | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ( topGen ‘ ran 𝑓 ) ∈ Top ) |
| 181 | tgclb | ⊢ ( ran 𝑓 ∈ TopBases ↔ ( topGen ‘ ran 𝑓 ) ∈ Top ) | |
| 182 | 180 181 | sylibr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ran 𝑓 ∈ TopBases ) |
| 183 | omelon | ⊢ ω ∈ On | |
| 184 | 25 | adantr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝑆 ≼ ω ) |
| 185 | ondomen | ⊢ ( ( ω ∈ On ∧ 𝑆 ≼ ω ) → 𝑆 ∈ dom card ) | |
| 186 | 183 184 185 | sylancr | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝑆 ∈ dom card ) |
| 187 | 100 | ad2antrl | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝑓 Fn 𝑆 ) |
| 188 | dffn4 | ⊢ ( 𝑓 Fn 𝑆 ↔ 𝑓 : 𝑆 –onto→ ran 𝑓 ) | |
| 189 | 187 188 | sylib | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝑓 : 𝑆 –onto→ ran 𝑓 ) |
| 190 | fodomnum | ⊢ ( 𝑆 ∈ dom card → ( 𝑓 : 𝑆 –onto→ ran 𝑓 → ran 𝑓 ≼ 𝑆 ) ) | |
| 191 | 186 189 190 | sylc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ran 𝑓 ≼ 𝑆 ) |
| 192 | domtr | ⊢ ( ( ran 𝑓 ≼ 𝑆 ∧ 𝑆 ≼ ω ) → ran 𝑓 ≼ ω ) | |
| 193 | 191 184 192 | syl2anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ran 𝑓 ≼ ω ) |
| 194 | 179 | eqcomd | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → 𝐽 = ( topGen ‘ ran 𝑓 ) ) |
| 195 | breq1 | ⊢ ( 𝑏 = ran 𝑓 → ( 𝑏 ≼ ω ↔ ran 𝑓 ≼ ω ) ) | |
| 196 | sseq1 | ⊢ ( 𝑏 = ran 𝑓 → ( 𝑏 ⊆ 𝐵 ↔ ran 𝑓 ⊆ 𝐵 ) ) | |
| 197 | fveq2 | ⊢ ( 𝑏 = ran 𝑓 → ( topGen ‘ 𝑏 ) = ( topGen ‘ ran 𝑓 ) ) | |
| 198 | 197 | eqeq2d | ⊢ ( 𝑏 = ran 𝑓 → ( 𝐽 = ( topGen ‘ 𝑏 ) ↔ 𝐽 = ( topGen ‘ ran 𝑓 ) ) ) |
| 199 | 195 196 198 | 3anbi123d | ⊢ ( 𝑏 = ran 𝑓 → ( ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ↔ ( ran 𝑓 ≼ ω ∧ ran 𝑓 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ ran 𝑓 ) ) ) ) |
| 200 | 199 | rspcev | ⊢ ( ( ran 𝑓 ∈ TopBases ∧ ( ran 𝑓 ≼ ω ∧ ran 𝑓 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ ran 𝑓 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) |
| 201 | 182 193 64 194 200 | syl13anc | ⊢ ( ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) ∧ ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) |
| 202 | 201 | ex | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) ) |
| 203 | 59 202 | sylbid | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) ) |
| 204 | 203 | exlimdv | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ( ∃ 𝑓 ( 𝑓 : 𝑆 ⟶ ( I ‘ 𝐵 ) ∧ ∀ 𝑥 ∈ 𝑆 ( ( 1st ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑥 ) ∧ ( 𝑓 ‘ 𝑥 ) ⊆ ( 2nd ‘ 𝑥 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) ) |
| 205 | 56 204 | mpd | ⊢ ( ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) ∧ ( 𝑐 ∈ TopBases ∧ ( 𝑐 ≼ ω ∧ ( topGen ‘ 𝑐 ) = 𝐽 ) ) ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) |
| 206 | 5 205 | rexlimddv | ⊢ ( ( 𝐵 ∈ TopBases ∧ 𝐽 ∈ 2ndω ) → ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ 𝑏 ⊆ 𝐵 ∧ 𝐽 = ( topGen ‘ 𝑏 ) ) ) |