This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The law of concretion for a binary relation. (Contributed by NM, 19-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | opelopaba.1 | ⊢ 𝐴 ∈ V | |
| opelopaba.2 | ⊢ 𝐵 ∈ V | ||
| opelopaba.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| braba.4 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | ||
| Assertion | braba | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelopaba.1 | ⊢ 𝐴 ∈ V | |
| 2 | opelopaba.2 | ⊢ 𝐵 ∈ V | |
| 3 | opelopaba.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | braba.4 | ⊢ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ 𝜑 } | |
| 5 | 3 4 | brabga | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) ) |
| 6 | 1 2 5 | mp2an | ⊢ ( 𝐴 𝑅 𝐵 ↔ 𝜓 ) |