This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A second-countable topology is a topology. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndctop | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) | |
| 2 | simprr | ⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → ( topGen ‘ 𝑥 ) = 𝐽 ) | |
| 3 | tgcl | ⊢ ( 𝑥 ∈ TopBases → ( topGen ‘ 𝑥 ) ∈ Top ) | |
| 4 | 3 | adantr | ⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → ( topGen ‘ 𝑥 ) ∈ Top ) |
| 5 | 2 4 | eqeltrrd | ⊢ ( ( 𝑥 ∈ TopBases ∧ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) → 𝐽 ∈ Top ) |
| 6 | 5 | rexlimiva | ⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ Top ) |
| 7 | 1 6 | sylbi | ⊢ ( 𝐽 ∈ 2ndω → 𝐽 ∈ Top ) |