This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any disjoint family of open sets in a second-countable space is countable. (The sets are required to be nonempty because otherwise there could be many empty sets in the family.) (Contributed by Mario Carneiro, 21-Mar-2015) (Proof shortened by Mario Carneiro, 9-Apr-2015) (Revised by NM, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 2ndcdisj | ⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) ) | |
| 2 | omex | ⊢ ω ∈ V | |
| 3 | 2 | brdom | ⊢ ( 𝑏 ≼ ω ↔ ∃ 𝑓 𝑓 : 𝑏 –1-1→ ω ) |
| 4 | ssrab2 | ⊢ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ran 𝑓 | |
| 5 | f1f | ⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 : 𝑏 ⟶ ω ) | |
| 6 | 5 | frnd | ⊢ ( 𝑓 : 𝑏 –1-1→ ω → ran 𝑓 ⊆ ω ) |
| 7 | 6 | adantl | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ran 𝑓 ⊆ ω ) |
| 8 | 4 7 | sstrid | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ ω ) |
| 10 | eldifsn | ⊢ ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) ) | |
| 11 | n0 | ⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝐵 ) | |
| 12 | tg2 | ⊢ ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐵 ) → ∃ 𝑧 ∈ 𝑏 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) | |
| 13 | omsson | ⊢ ω ⊆ On | |
| 14 | 8 13 | sstrdi | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ) |
| 16 | f1fn | ⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 Fn 𝑏 ) | |
| 17 | 16 | ad3antlr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑓 Fn 𝑏 ) |
| 18 | simprl | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ 𝑏 ) | |
| 19 | fnfvelrn | ⊢ ( ( 𝑓 Fn 𝑏 ∧ 𝑧 ∈ 𝑏 ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) | |
| 20 | 17 18 19 | syl2anc | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ) |
| 21 | f1f1orn | ⊢ ( 𝑓 : 𝑏 –1-1→ ω → 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ) | |
| 22 | 21 | ad3antlr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ) |
| 23 | f1ocnvfv1 | ⊢ ( ( 𝑓 : 𝑏 –1-1-onto→ ran 𝑓 ∧ 𝑧 ∈ 𝑏 ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) | |
| 24 | 22 18 23 | syl2anc | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) = 𝑧 ) |
| 25 | simprrr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ⊆ 𝐵 ) | |
| 26 | velpw | ⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) | |
| 27 | 25 26 | sylibr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ 𝒫 𝐵 ) |
| 28 | simprrl | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑦 ∈ 𝑧 ) | |
| 29 | 28 | ne0d | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ≠ ∅ ) |
| 30 | eldifsn | ⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ≠ ∅ ) ) | |
| 31 | 27 29 30 | sylanbrc | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → 𝑧 ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 32 | 24 31 | eqeltrd | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 33 | fveq2 | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑧 ) → ( ◡ 𝑓 ‘ 𝑛 ) = ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ) | |
| 34 | 33 | eleq1d | ⊢ ( 𝑛 = ( 𝑓 ‘ 𝑧 ) → ( ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
| 35 | 34 | rspcev | ⊢ ( ( ( 𝑓 ‘ 𝑧 ) ∈ ran 𝑓 ∧ ( ◡ 𝑓 ‘ ( 𝑓 ‘ 𝑧 ) ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) → ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 36 | 20 32 35 | syl2anc | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 37 | rabn0 | ⊢ ( { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ↔ ∃ 𝑛 ∈ ran 𝑓 ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) | |
| 38 | 36 37 | sylibr | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ) |
| 39 | onint | ⊢ ( ( { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ⊆ On ∧ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ≠ ∅ ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) | |
| 40 | 15 38 39 | syl2anc | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ ( 𝑧 ∈ 𝑏 ∧ ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
| 41 | 40 | rexlimdvaa | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ∃ 𝑧 ∈ 𝑏 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝐵 ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 42 | 12 41 | syl5 | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝑦 ∈ 𝐵 ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 43 | 42 | expdimp | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝑦 ∈ 𝐵 → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 44 | 43 | exlimdv | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( ∃ 𝑦 𝑦 ∈ 𝐵 → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 45 | 11 44 | biimtrid | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐵 ∈ ( topGen ‘ 𝑏 ) ) → ( 𝐵 ≠ ∅ → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 46 | 45 | expimpd | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝐵 ∈ ( topGen ‘ 𝑏 ) ∧ 𝐵 ≠ ∅ ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 47 | 10 46 | biimtrid | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 48 | 47 | impr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
| 49 | 9 48 | sseldd | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
| 50 | 49 | expr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) ) |
| 51 | 50 | ralimdva | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) ) |
| 52 | 51 | imp | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
| 53 | 52 | adantrr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ) |
| 54 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) | |
| 55 | 54 | fmpt | ⊢ ( ∀ 𝑥 ∈ 𝐴 ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ ω ↔ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ) |
| 56 | 53 55 | sylib | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ) |
| 57 | neeq1 | ⊢ ( ( ◡ 𝑓 ‘ 𝑧 ) = if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ↔ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ) ) | |
| 58 | neeq1 | ⊢ ( 1o = if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( 1o ≠ ∅ ↔ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ) ) | |
| 59 | 1n0 | ⊢ 1o ≠ ∅ | |
| 60 | 57 58 59 | elimhyp | ⊢ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ |
| 61 | n0 | ⊢ ( if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) | |
| 62 | 60 61 | mpbi | ⊢ ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) |
| 63 | 19.29r | ⊢ ( ( ∃ 𝑦 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) | |
| 64 | 62 63 | mpan | ⊢ ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) |
| 65 | eleq1 | ⊢ ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) | |
| 66 | 48 65 | syl5ibrcom | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 67 | 66 | imp | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
| 68 | fveq2 | ⊢ ( 𝑛 = 𝑧 → ( ◡ 𝑓 ‘ 𝑛 ) = ( ◡ 𝑓 ‘ 𝑧 ) ) | |
| 69 | 68 | eleq1d | ⊢ ( 𝑛 = 𝑧 → ( ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
| 70 | 69 | elrab | ⊢ ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ( 𝑧 ∈ ran 𝑓 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) ) |
| 71 | 70 | simprbi | ⊢ ( 𝑧 ∈ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 72 | 67 71 | syl | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ) |
| 73 | eldifsn | ⊢ ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) ↔ ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) ) | |
| 74 | 72 73 | sylib | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ∧ ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) ) |
| 75 | 74 | simprd | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ ) |
| 76 | 75 | iftrued | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) = ( ◡ 𝑓 ‘ 𝑧 ) ) |
| 77 | 74 | simpld | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ∈ 𝒫 𝐵 ) |
| 78 | 77 | elpwid | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( ◡ 𝑓 ‘ 𝑧 ) ⊆ 𝐵 ) |
| 79 | 76 78 | eqsstrd | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ⊆ 𝐵 ) |
| 80 | 79 | sseld | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ) ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) |
| 81 | 80 | exp31 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) |
| 82 | 81 | com23 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) |
| 83 | 82 | exp4a | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → 𝑦 ∈ 𝐵 ) ) ) ) ) |
| 84 | 83 | com25 | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) → ( 𝑥 ∈ 𝐴 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) ) ) |
| 85 | 84 | imp31 | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) ∧ 𝑥 ∈ 𝐴 ) → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) |
| 86 | 85 | ralimdva | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) ) |
| 87 | 86 | imp | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) |
| 88 | 87 | an32s | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) ) |
| 89 | rmoim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } → 𝑦 ∈ 𝐵 ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) | |
| 90 | 88 89 | syl | ⊢ ( ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) ∧ 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ) → ( ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 91 | 90 | expimpd | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 92 | 91 | exlimdv | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∃ 𝑦 ( 𝑦 ∈ if ( ( ◡ 𝑓 ‘ 𝑧 ) ≠ ∅ , ( ◡ 𝑓 ‘ 𝑧 ) , 1o ) ∧ ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 93 | 64 92 | syl5 | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ) → ( ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 94 | 93 | impr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
| 95 | nfcv | ⊢ Ⅎ 𝑥 𝑤 | |
| 96 | nfmpt1 | ⊢ Ⅎ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) | |
| 97 | nfcv | ⊢ Ⅎ 𝑥 𝑧 | |
| 98 | 95 96 97 | nfbr | ⊢ Ⅎ 𝑥 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 |
| 99 | nfv | ⊢ Ⅎ 𝑤 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) | |
| 100 | breq1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) ) | |
| 101 | df-br | ⊢ ( 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ 〈 𝑥 , 𝑧 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) | |
| 102 | df-mpt | ⊢ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) = { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } | |
| 103 | 102 | eleq2i | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ↔ 〈 𝑥 , 𝑧 〉 ∈ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } ) |
| 104 | opabidw | ⊢ ( 〈 𝑥 , 𝑧 〉 ∈ { 〈 𝑥 , 𝑧 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) } ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) | |
| 105 | 101 103 104 | 3bitri | ⊢ ( 𝑥 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 106 | 100 105 | bitrdi | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) ) |
| 107 | 98 99 106 | cbvmow | ⊢ ( ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) |
| 108 | df-rmo | ⊢ ( ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ↔ ∃* 𝑥 ( 𝑥 ∈ 𝐴 ∧ 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) ) | |
| 109 | 107 108 | bitr4i | ⊢ ( ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ↔ ∃* 𝑥 ∈ 𝐴 𝑧 = ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) |
| 110 | 94 109 | sylibr | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) |
| 111 | 110 | alrimiv | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) |
| 112 | dff12 | ⊢ ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω ↔ ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 ⟶ ω ∧ ∀ 𝑧 ∃* 𝑤 𝑤 ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) 𝑧 ) ) | |
| 113 | 56 111 112 | sylanbrc | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω ) |
| 114 | f1domg | ⊢ ( ω ∈ V → ( ( 𝑥 ∈ 𝐴 ↦ ∩ { 𝑛 ∈ ran 𝑓 ∣ ( ◡ 𝑓 ‘ 𝑛 ) ∈ ( 𝒫 𝐵 ∖ { ∅ } ) } ) : 𝐴 –1-1→ ω → 𝐴 ≼ ω ) ) | |
| 115 | 2 113 114 | mpsyl | ⊢ ( ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) ∧ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) → 𝐴 ≼ ω ) |
| 116 | 115 | ex | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
| 117 | difeq1 | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) = ( 𝐽 ∖ { ∅ } ) ) | |
| 118 | 117 | eleq2d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) ) |
| 119 | 118 | ralbidv | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ↔ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ) ) |
| 120 | 119 | anbi1d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ↔ ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) ) ) |
| 121 | 120 | imbi1d | ⊢ ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( ( topGen ‘ 𝑏 ) ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ↔ ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
| 122 | 116 121 | syl5ibcom | ⊢ ( ( 𝑏 ∈ TopBases ∧ 𝑓 : 𝑏 –1-1→ ω ) → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
| 123 | 122 | ex | ⊢ ( 𝑏 ∈ TopBases → ( 𝑓 : 𝑏 –1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
| 124 | 123 | exlimdv | ⊢ ( 𝑏 ∈ TopBases → ( ∃ 𝑓 𝑓 : 𝑏 –1-1→ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
| 125 | 3 124 | biimtrid | ⊢ ( 𝑏 ∈ TopBases → ( 𝑏 ≼ ω → ( ( topGen ‘ 𝑏 ) = 𝐽 → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) ) |
| 126 | 125 | impd | ⊢ ( 𝑏 ∈ TopBases → ( ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) ) |
| 127 | 126 | rexlimiv | ⊢ ( ∃ 𝑏 ∈ TopBases ( 𝑏 ≼ ω ∧ ( topGen ‘ 𝑏 ) = 𝐽 ) → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
| 128 | 1 127 | sylbi | ⊢ ( 𝐽 ∈ 2ndω → ( ( ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) ) |
| 129 | 128 | 3impib | ⊢ ( ( 𝐽 ∈ 2ndω ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ ( 𝐽 ∖ { ∅ } ) ∧ ∀ 𝑦 ∃* 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) → 𝐴 ≼ ω ) |