This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being second-countable. (Contributed by Jeff Hankins, 17-Jan-2010) (Revised by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | is2ndc | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-2ndc | ⊢ 2ndω = { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } | |
| 2 | 1 | eleq2i | ⊢ ( 𝐽 ∈ 2ndω ↔ 𝐽 ∈ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } ) |
| 3 | simpr | ⊢ ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → ( topGen ‘ 𝑥 ) = 𝐽 ) | |
| 4 | fvex | ⊢ ( topGen ‘ 𝑥 ) ∈ V | |
| 5 | 3 4 | eqeltrrdi | ⊢ ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ V ) |
| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) → 𝐽 ∈ V ) |
| 7 | eqeq2 | ⊢ ( 𝑗 = 𝐽 → ( ( topGen ‘ 𝑥 ) = 𝑗 ↔ ( topGen ‘ 𝑥 ) = 𝐽 ) ) | |
| 8 | 7 | anbi2d | ⊢ ( 𝑗 = 𝐽 → ( ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) ↔ ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) ) |
| 9 | 8 | rexbidv | ⊢ ( 𝑗 = 𝐽 → ( ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) ) |
| 10 | 6 9 | elab3 | ⊢ ( 𝐽 ∈ { 𝑗 ∣ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝑗 ) } ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |
| 11 | 2 10 | bitri | ⊢ ( 𝐽 ∈ 2ndω ↔ ∃ 𝑥 ∈ TopBases ( 𝑥 ≼ ω ∧ ( topGen ‘ 𝑥 ) = 𝐽 ) ) |