This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Given a topology J , show that a subset B satisfying the third antecedent is a basis for it. Lemma 2.3 of Munkres p. 81. (Contributed by NM, 20-Jul-2006) (Proof shortened by Mario Carneiro, 2-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | basgen2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfss3 | ⊢ ( 𝐽 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐽 𝑥 ∈ ( topGen ‘ 𝐵 ) ) | |
| 2 | ssexg | ⊢ ( ( 𝐵 ⊆ 𝐽 ∧ 𝐽 ∈ Top ) → 𝐵 ∈ V ) | |
| 3 | 2 | ancoms | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → 𝐵 ∈ V ) |
| 4 | eltg2b | ⊢ ( 𝐵 ∈ V → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 6 | 5 | ralbidv | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( ∀ 𝑥 ∈ 𝐽 𝑥 ∈ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 7 | 1 6 | bitrid | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ) → ( 𝐽 ⊆ ( topGen ‘ 𝐵 ) ↔ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) ) |
| 8 | 7 | biimp3ar | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) → 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) |
| 9 | basgen | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ 𝐽 ⊆ ( topGen ‘ 𝐵 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 ) | |
| 10 | 8 9 | syld3an3 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝐵 ⊆ 𝐽 ∧ ∀ 𝑥 ∈ 𝐽 ∀ 𝑦 ∈ 𝑥 ∃ 𝑧 ∈ 𝐵 ( 𝑦 ∈ 𝑧 ∧ 𝑧 ⊆ 𝑥 ) ) → ( topGen ‘ 𝐵 ) = 𝐽 ) |