This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a topology is second-countable, every base has a countable subset which is a base. Exercise 16B2 in Willard. (Contributed by Jeff Hankins, 28-Jan-2010) (Proof shortened by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2ndcctbss.1 | |- J = ( topGen ` B ) |
|
| 2ndcctbss.2 | |- S = { <. u , v >. | ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) } |
||
| Assertion | 2ndcctbss | |- ( ( B e. TopBases /\ J e. 2ndc ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2ndcctbss.1 | |- J = ( topGen ` B ) |
|
| 2 | 2ndcctbss.2 | |- S = { <. u , v >. | ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) } |
|
| 3 | simpr | |- ( ( B e. TopBases /\ J e. 2ndc ) -> J e. 2ndc ) |
|
| 4 | is2ndc | |- ( J e. 2ndc <-> E. c e. TopBases ( c ~<_ _om /\ ( topGen ` c ) = J ) ) |
|
| 5 | 3 4 | sylib | |- ( ( B e. TopBases /\ J e. 2ndc ) -> E. c e. TopBases ( c ~<_ _om /\ ( topGen ` c ) = J ) ) |
| 6 | vex | |- c e. _V |
|
| 7 | 6 6 | xpex | |- ( c X. c ) e. _V |
| 8 | 3simpa | |- ( ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) -> ( u e. c /\ v e. c ) ) |
|
| 9 | 8 | ssopab2i | |- { <. u , v >. | ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) } C_ { <. u , v >. | ( u e. c /\ v e. c ) } |
| 10 | df-xp | |- ( c X. c ) = { <. u , v >. | ( u e. c /\ v e. c ) } |
|
| 11 | 9 2 10 | 3sstr4i | |- S C_ ( c X. c ) |
| 12 | ssdomg | |- ( ( c X. c ) e. _V -> ( S C_ ( c X. c ) -> S ~<_ ( c X. c ) ) ) |
|
| 13 | 7 11 12 | mp2 | |- S ~<_ ( c X. c ) |
| 14 | 6 | xpdom1 | |- ( c ~<_ _om -> ( c X. c ) ~<_ ( _om X. c ) ) |
| 15 | omex | |- _om e. _V |
|
| 16 | 15 | xpdom2 | |- ( c ~<_ _om -> ( _om X. c ) ~<_ ( _om X. _om ) ) |
| 17 | domtr | |- ( ( ( c X. c ) ~<_ ( _om X. c ) /\ ( _om X. c ) ~<_ ( _om X. _om ) ) -> ( c X. c ) ~<_ ( _om X. _om ) ) |
|
| 18 | 14 16 17 | syl2anc | |- ( c ~<_ _om -> ( c X. c ) ~<_ ( _om X. _om ) ) |
| 19 | xpomen | |- ( _om X. _om ) ~~ _om |
|
| 20 | domentr | |- ( ( ( c X. c ) ~<_ ( _om X. _om ) /\ ( _om X. _om ) ~~ _om ) -> ( c X. c ) ~<_ _om ) |
|
| 21 | 18 19 20 | sylancl | |- ( c ~<_ _om -> ( c X. c ) ~<_ _om ) |
| 22 | 21 | adantr | |- ( ( c ~<_ _om /\ ( topGen ` c ) = J ) -> ( c X. c ) ~<_ _om ) |
| 23 | 22 | ad2antll | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( c X. c ) ~<_ _om ) |
| 24 | domtr | |- ( ( S ~<_ ( c X. c ) /\ ( c X. c ) ~<_ _om ) -> S ~<_ _om ) |
|
| 25 | 13 23 24 | sylancr | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> S ~<_ _om ) |
| 26 | 2 | relopabiv | |- Rel S |
| 27 | simpr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> x e. S ) |
|
| 28 | 1st2nd | |- ( ( Rel S /\ x e. S ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
|
| 29 | 26 27 28 | sylancr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 30 | 29 27 | eqeltrrd | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. e. S ) |
| 31 | df-br | |- ( ( 1st ` x ) S ( 2nd ` x ) <-> <. ( 1st ` x ) , ( 2nd ` x ) >. e. S ) |
|
| 32 | fvex | |- ( 1st ` x ) e. _V |
|
| 33 | fvex | |- ( 2nd ` x ) e. _V |
|
| 34 | simpl | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> u = ( 1st ` x ) ) |
|
| 35 | 34 | eleq1d | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> ( u e. c <-> ( 1st ` x ) e. c ) ) |
| 36 | simpr | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> v = ( 2nd ` x ) ) |
|
| 37 | 36 | eleq1d | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> ( v e. c <-> ( 2nd ` x ) e. c ) ) |
| 38 | sseq1 | |- ( u = ( 1st ` x ) -> ( u C_ w <-> ( 1st ` x ) C_ w ) ) |
|
| 39 | sseq2 | |- ( v = ( 2nd ` x ) -> ( w C_ v <-> w C_ ( 2nd ` x ) ) ) |
|
| 40 | 38 39 | bi2anan9 | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> ( ( u C_ w /\ w C_ v ) <-> ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) ) |
| 41 | 40 | rexbidv | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> ( E. w e. B ( u C_ w /\ w C_ v ) <-> E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) ) |
| 42 | 35 37 41 | 3anbi123d | |- ( ( u = ( 1st ` x ) /\ v = ( 2nd ` x ) ) -> ( ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) <-> ( ( 1st ` x ) e. c /\ ( 2nd ` x ) e. c /\ E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) ) ) |
| 43 | 32 33 42 2 | braba | |- ( ( 1st ` x ) S ( 2nd ` x ) <-> ( ( 1st ` x ) e. c /\ ( 2nd ` x ) e. c /\ E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) ) |
| 44 | 31 43 | bitr3i | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. S <-> ( ( 1st ` x ) e. c /\ ( 2nd ` x ) e. c /\ E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) ) |
| 45 | 44 | simp3bi | |- ( <. ( 1st ` x ) , ( 2nd ` x ) >. e. S -> E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) |
| 46 | 30 45 | syl | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> E. w e. B ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) |
| 47 | fvi | |- ( B e. TopBases -> ( _I ` B ) = B ) |
|
| 48 | 47 | ad3antrrr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> ( _I ` B ) = B ) |
| 49 | 46 48 | rexeqtrrdv | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ x e. S ) -> E. w e. ( _I ` B ) ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) |
| 50 | 49 | ralrimiva | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> A. x e. S E. w e. ( _I ` B ) ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) |
| 51 | fvex | |- ( _I ` B ) e. _V |
|
| 52 | sseq2 | |- ( w = ( f ` x ) -> ( ( 1st ` x ) C_ w <-> ( 1st ` x ) C_ ( f ` x ) ) ) |
|
| 53 | sseq1 | |- ( w = ( f ` x ) -> ( w C_ ( 2nd ` x ) <-> ( f ` x ) C_ ( 2nd ` x ) ) ) |
|
| 54 | 52 53 | anbi12d | |- ( w = ( f ` x ) -> ( ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) <-> ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) |
| 55 | 51 54 | axcc4dom | |- ( ( S ~<_ _om /\ A. x e. S E. w e. ( _I ` B ) ( ( 1st ` x ) C_ w /\ w C_ ( 2nd ` x ) ) ) -> E. f ( f : S --> ( _I ` B ) /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) |
| 56 | 25 50 55 | syl2anc | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> E. f ( f : S --> ( _I ` B ) /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) |
| 57 | 47 | ad2antrr | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( _I ` B ) = B ) |
| 58 | 57 | feq3d | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( f : S --> ( _I ` B ) <-> f : S --> B ) ) |
| 59 | 58 | anbi1d | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( ( f : S --> ( _I ` B ) /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) <-> ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) ) |
| 60 | 2ndctop | |- ( J e. 2ndc -> J e. Top ) |
|
| 61 | 60 | adantl | |- ( ( B e. TopBases /\ J e. 2ndc ) -> J e. Top ) |
| 62 | 61 | ad2antrr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> J e. Top ) |
| 63 | frn | |- ( f : S --> B -> ran f C_ B ) |
|
| 64 | 63 | ad2antrl | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ran f C_ B ) |
| 65 | bastg | |- ( B e. TopBases -> B C_ ( topGen ` B ) ) |
|
| 66 | 65 | ad3antrrr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> B C_ ( topGen ` B ) ) |
| 67 | 66 1 | sseqtrrdi | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> B C_ J ) |
| 68 | 64 67 | sstrd | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ran f C_ J ) |
| 69 | simprrl | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> o e. J ) |
|
| 70 | simprr | |- ( ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) -> ( topGen ` c ) = J ) |
|
| 71 | 70 | ad2antlr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> ( topGen ` c ) = J ) |
| 72 | 69 71 | eleqtrrd | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> o e. ( topGen ` c ) ) |
| 73 | simprrr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> t e. o ) |
|
| 74 | tg2 | |- ( ( o e. ( topGen ` c ) /\ t e. o ) -> E. d e. c ( t e. d /\ d C_ o ) ) |
|
| 75 | 72 73 74 | syl2anc | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> E. d e. c ( t e. d /\ d C_ o ) ) |
| 76 | bastg | |- ( c e. TopBases -> c C_ ( topGen ` c ) ) |
|
| 77 | 76 | ad2antrl | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> c C_ ( topGen ` c ) ) |
| 78 | 77 | ad2antrr | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> c C_ ( topGen ` c ) ) |
| 79 | 1 | eqeq2i | |- ( ( topGen ` c ) = J <-> ( topGen ` c ) = ( topGen ` B ) ) |
| 80 | 79 | biimpi | |- ( ( topGen ` c ) = J -> ( topGen ` c ) = ( topGen ` B ) ) |
| 81 | 80 | adantl | |- ( ( c ~<_ _om /\ ( topGen ` c ) = J ) -> ( topGen ` c ) = ( topGen ` B ) ) |
| 82 | 81 | ad2antll | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( topGen ` c ) = ( topGen ` B ) ) |
| 83 | 82 | ad2antrr | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> ( topGen ` c ) = ( topGen ` B ) ) |
| 84 | 78 83 | sseqtrd | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> c C_ ( topGen ` B ) ) |
| 85 | simprl | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> d e. c ) |
|
| 86 | 84 85 | sseldd | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> d e. ( topGen ` B ) ) |
| 87 | simprrl | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> t e. d ) |
|
| 88 | tg2 | |- ( ( d e. ( topGen ` B ) /\ t e. d ) -> E. m e. B ( t e. m /\ m C_ d ) ) |
|
| 89 | 86 87 88 | syl2anc | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> E. m e. B ( t e. m /\ m C_ d ) ) |
| 90 | 65 | ad3antrrr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> B C_ ( topGen ` B ) ) |
| 91 | 90 | ad2antrr | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> B C_ ( topGen ` B ) ) |
| 92 | 71 | ad2antrr | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> ( topGen ` c ) = J ) |
| 93 | 92 1 | eqtr2di | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> ( topGen ` B ) = ( topGen ` c ) ) |
| 94 | 91 93 | sseqtrd | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> B C_ ( topGen ` c ) ) |
| 95 | simprl | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> m e. B ) |
|
| 96 | 94 95 | sseldd | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> m e. ( topGen ` c ) ) |
| 97 | simprrl | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> t e. m ) |
|
| 98 | tg2 | |- ( ( m e. ( topGen ` c ) /\ t e. m ) -> E. n e. c ( t e. n /\ n C_ m ) ) |
|
| 99 | 96 97 98 | syl2anc | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> E. n e. c ( t e. n /\ n C_ m ) ) |
| 100 | ffn | |- ( f : S --> B -> f Fn S ) |
|
| 101 | 100 | ad2antrr | |- ( ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) -> f Fn S ) |
| 102 | 101 | ad2antlr | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> f Fn S ) |
| 103 | 102 | ad2antrr | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> f Fn S ) |
| 104 | simprl | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> n e. c ) |
|
| 105 | 85 | ad2antrr | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> d e. c ) |
| 106 | simplrl | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> m e. B ) |
|
| 107 | simprrr | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> n C_ m ) |
|
| 108 | simprr | |- ( ( m e. B /\ ( t e. m /\ m C_ d ) ) -> m C_ d ) |
|
| 109 | 108 | ad2antlr | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> m C_ d ) |
| 110 | sseq2 | |- ( w = m -> ( n C_ w <-> n C_ m ) ) |
|
| 111 | sseq1 | |- ( w = m -> ( w C_ d <-> m C_ d ) ) |
|
| 112 | 110 111 | anbi12d | |- ( w = m -> ( ( n C_ w /\ w C_ d ) <-> ( n C_ m /\ m C_ d ) ) ) |
| 113 | 112 | rspcev | |- ( ( m e. B /\ ( n C_ m /\ m C_ d ) ) -> E. w e. B ( n C_ w /\ w C_ d ) ) |
| 114 | 106 107 109 113 | syl12anc | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> E. w e. B ( n C_ w /\ w C_ d ) ) |
| 115 | df-br | |- ( n S d <-> <. n , d >. e. S ) |
|
| 116 | vex | |- n e. _V |
|
| 117 | vex | |- d e. _V |
|
| 118 | simpl | |- ( ( u = n /\ v = d ) -> u = n ) |
|
| 119 | 118 | eleq1d | |- ( ( u = n /\ v = d ) -> ( u e. c <-> n e. c ) ) |
| 120 | simpr | |- ( ( u = n /\ v = d ) -> v = d ) |
|
| 121 | 120 | eleq1d | |- ( ( u = n /\ v = d ) -> ( v e. c <-> d e. c ) ) |
| 122 | sseq1 | |- ( u = n -> ( u C_ w <-> n C_ w ) ) |
|
| 123 | sseq2 | |- ( v = d -> ( w C_ v <-> w C_ d ) ) |
|
| 124 | 122 123 | bi2anan9 | |- ( ( u = n /\ v = d ) -> ( ( u C_ w /\ w C_ v ) <-> ( n C_ w /\ w C_ d ) ) ) |
| 125 | 124 | rexbidv | |- ( ( u = n /\ v = d ) -> ( E. w e. B ( u C_ w /\ w C_ v ) <-> E. w e. B ( n C_ w /\ w C_ d ) ) ) |
| 126 | 119 121 125 | 3anbi123d | |- ( ( u = n /\ v = d ) -> ( ( u e. c /\ v e. c /\ E. w e. B ( u C_ w /\ w C_ v ) ) <-> ( n e. c /\ d e. c /\ E. w e. B ( n C_ w /\ w C_ d ) ) ) ) |
| 127 | 116 117 126 2 | braba | |- ( n S d <-> ( n e. c /\ d e. c /\ E. w e. B ( n C_ w /\ w C_ d ) ) ) |
| 128 | 115 127 | bitr3i | |- ( <. n , d >. e. S <-> ( n e. c /\ d e. c /\ E. w e. B ( n C_ w /\ w C_ d ) ) ) |
| 129 | 104 105 114 128 | syl3anbrc | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> <. n , d >. e. S ) |
| 130 | fnfvelrn | |- ( ( f Fn S /\ <. n , d >. e. S ) -> ( f ` <. n , d >. ) e. ran f ) |
|
| 131 | 103 129 130 | syl2anc | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( f ` <. n , d >. ) e. ran f ) |
| 132 | simprl | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> n e. c ) |
|
| 133 | simplll | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> d e. c ) |
|
| 134 | simplrl | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> m e. B ) |
|
| 135 | simprrr | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> n C_ m ) |
|
| 136 | 108 | ad2antlr | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> m C_ d ) |
| 137 | 134 135 136 113 | syl12anc | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> E. w e. B ( n C_ w /\ w C_ d ) ) |
| 138 | 132 133 137 128 | syl3anbrc | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> <. n , d >. e. S ) |
| 139 | fveq2 | |- ( x = <. n , d >. -> ( 1st ` x ) = ( 1st ` <. n , d >. ) ) |
|
| 140 | fveq2 | |- ( x = <. n , d >. -> ( f ` x ) = ( f ` <. n , d >. ) ) |
|
| 141 | 139 140 | sseq12d | |- ( x = <. n , d >. -> ( ( 1st ` x ) C_ ( f ` x ) <-> ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) ) ) |
| 142 | fveq2 | |- ( x = <. n , d >. -> ( 2nd ` x ) = ( 2nd ` <. n , d >. ) ) |
|
| 143 | 140 142 | sseq12d | |- ( x = <. n , d >. -> ( ( f ` x ) C_ ( 2nd ` x ) <-> ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) ) |
| 144 | 141 143 | anbi12d | |- ( x = <. n , d >. -> ( ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) <-> ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) ) ) |
| 145 | 144 | rspcv | |- ( <. n , d >. e. S -> ( A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) -> ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) ) ) |
| 146 | 138 145 | syl | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) -> ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) ) ) |
| 147 | 116 117 | op1st | |- ( 1st ` <. n , d >. ) = n |
| 148 | 147 | sseq1i | |- ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) <-> n C_ ( f ` <. n , d >. ) ) |
| 149 | 116 117 | op2nd | |- ( 2nd ` <. n , d >. ) = d |
| 150 | 149 | sseq2i | |- ( ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) <-> ( f ` <. n , d >. ) C_ d ) |
| 151 | 148 150 | anbi12i | |- ( ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) <-> ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) |
| 152 | simprl | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> n C_ ( f ` <. n , d >. ) ) |
|
| 153 | simprl | |- ( ( n e. c /\ ( t e. n /\ n C_ m ) ) -> t e. n ) |
|
| 154 | 153 | ad2antlr | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> t e. n ) |
| 155 | 152 154 | sseldd | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> t e. ( f ` <. n , d >. ) ) |
| 156 | simprr | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> ( f ` <. n , d >. ) C_ d ) |
|
| 157 | simplrr | |- ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> d C_ o ) |
|
| 158 | 157 | ad2antrr | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> d C_ o ) |
| 159 | 156 158 | sstrd | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> ( f ` <. n , d >. ) C_ o ) |
| 160 | 155 159 | jca | |- ( ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) /\ ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) |
| 161 | 160 | ex | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( ( n C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ d ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) |
| 162 | 151 161 | biimtrid | |- ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( ( ( 1st ` <. n , d >. ) C_ ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ ( 2nd ` <. n , d >. ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) |
| 163 | 146 162 | syldc | |- ( A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) -> ( ( ( ( d e. c /\ ( t e. d /\ d C_ o ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) |
| 164 | 163 | exp4c | |- ( A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) -> ( ( d e. c /\ ( t e. d /\ d C_ o ) ) -> ( ( m e. B /\ ( t e. m /\ m C_ d ) ) -> ( ( n e. c /\ ( t e. n /\ n C_ m ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) ) ) |
| 165 | 164 | ad2antlr | |- ( ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) -> ( ( d e. c /\ ( t e. d /\ d C_ o ) ) -> ( ( m e. B /\ ( t e. m /\ m C_ d ) ) -> ( ( n e. c /\ ( t e. n /\ n C_ m ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) ) ) |
| 166 | 165 | adantl | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> ( ( d e. c /\ ( t e. d /\ d C_ o ) ) -> ( ( m e. B /\ ( t e. m /\ m C_ d ) ) -> ( ( n e. c /\ ( t e. n /\ n C_ m ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) ) ) |
| 167 | 166 | imp41 | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) |
| 168 | eleq2 | |- ( b = ( f ` <. n , d >. ) -> ( t e. b <-> t e. ( f ` <. n , d >. ) ) ) |
|
| 169 | sseq1 | |- ( b = ( f ` <. n , d >. ) -> ( b C_ o <-> ( f ` <. n , d >. ) C_ o ) ) |
|
| 170 | 168 169 | anbi12d | |- ( b = ( f ` <. n , d >. ) -> ( ( t e. b /\ b C_ o ) <-> ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) ) |
| 171 | 170 | rspcev | |- ( ( ( f ` <. n , d >. ) e. ran f /\ ( t e. ( f ` <. n , d >. ) /\ ( f ` <. n , d >. ) C_ o ) ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 172 | 131 167 171 | syl2anc | |- ( ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) /\ ( n e. c /\ ( t e. n /\ n C_ m ) ) ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 173 | 99 172 | rexlimddv | |- ( ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) /\ ( m e. B /\ ( t e. m /\ m C_ d ) ) ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 174 | 89 173 | rexlimddv | |- ( ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) /\ ( d e. c /\ ( t e. d /\ d C_ o ) ) ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 175 | 75 174 | rexlimddv | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) /\ ( o e. J /\ t e. o ) ) ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 176 | 175 | expr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ( ( o e. J /\ t e. o ) -> E. b e. ran f ( t e. b /\ b C_ o ) ) ) |
| 177 | 176 | ralrimivv | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> A. o e. J A. t e. o E. b e. ran f ( t e. b /\ b C_ o ) ) |
| 178 | basgen2 | |- ( ( J e. Top /\ ran f C_ J /\ A. o e. J A. t e. o E. b e. ran f ( t e. b /\ b C_ o ) ) -> ( topGen ` ran f ) = J ) |
|
| 179 | 62 68 177 178 | syl3anc | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ( topGen ` ran f ) = J ) |
| 180 | 179 62 | eqeltrd | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ( topGen ` ran f ) e. Top ) |
| 181 | tgclb | |- ( ran f e. TopBases <-> ( topGen ` ran f ) e. Top ) |
|
| 182 | 180 181 | sylibr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ran f e. TopBases ) |
| 183 | omelon | |- _om e. On |
|
| 184 | 25 | adantr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> S ~<_ _om ) |
| 185 | ondomen | |- ( ( _om e. On /\ S ~<_ _om ) -> S e. dom card ) |
|
| 186 | 183 184 185 | sylancr | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> S e. dom card ) |
| 187 | 100 | ad2antrl | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> f Fn S ) |
| 188 | dffn4 | |- ( f Fn S <-> f : S -onto-> ran f ) |
|
| 189 | 187 188 | sylib | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> f : S -onto-> ran f ) |
| 190 | fodomnum | |- ( S e. dom card -> ( f : S -onto-> ran f -> ran f ~<_ S ) ) |
|
| 191 | 186 189 190 | sylc | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ran f ~<_ S ) |
| 192 | domtr | |- ( ( ran f ~<_ S /\ S ~<_ _om ) -> ran f ~<_ _om ) |
|
| 193 | 191 184 192 | syl2anc | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> ran f ~<_ _om ) |
| 194 | 179 | eqcomd | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> J = ( topGen ` ran f ) ) |
| 195 | breq1 | |- ( b = ran f -> ( b ~<_ _om <-> ran f ~<_ _om ) ) |
|
| 196 | sseq1 | |- ( b = ran f -> ( b C_ B <-> ran f C_ B ) ) |
|
| 197 | fveq2 | |- ( b = ran f -> ( topGen ` b ) = ( topGen ` ran f ) ) |
|
| 198 | 197 | eqeq2d | |- ( b = ran f -> ( J = ( topGen ` b ) <-> J = ( topGen ` ran f ) ) ) |
| 199 | 195 196 198 | 3anbi123d | |- ( b = ran f -> ( ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) <-> ( ran f ~<_ _om /\ ran f C_ B /\ J = ( topGen ` ran f ) ) ) ) |
| 200 | 199 | rspcev | |- ( ( ran f e. TopBases /\ ( ran f ~<_ _om /\ ran f C_ B /\ J = ( topGen ` ran f ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) |
| 201 | 182 193 64 194 200 | syl13anc | |- ( ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) /\ ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) |
| 202 | 201 | ex | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( ( f : S --> B /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) ) |
| 203 | 59 202 | sylbid | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( ( f : S --> ( _I ` B ) /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) ) |
| 204 | 203 | exlimdv | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> ( E. f ( f : S --> ( _I ` B ) /\ A. x e. S ( ( 1st ` x ) C_ ( f ` x ) /\ ( f ` x ) C_ ( 2nd ` x ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) ) |
| 205 | 56 204 | mpd | |- ( ( ( B e. TopBases /\ J e. 2ndc ) /\ ( c e. TopBases /\ ( c ~<_ _om /\ ( topGen ` c ) = J ) ) ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) |
| 206 | 5 205 | rexlimddv | |- ( ( B e. TopBases /\ J e. 2ndc ) -> E. b e. TopBases ( b ~<_ _om /\ b C_ B /\ J = ( topGen ` b ) ) ) |