This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by plus infinity on the right, for negative input. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulpnf1n | |- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) = -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( A e. RR* /\ A < 0 ) -> A e. RR* ) |
|
| 2 | pnfxr | |- +oo e. RR* |
|
| 3 | xmulneg1 | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( -e A *e +oo ) = -e ( A *e +oo ) ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( A e. RR* /\ A < 0 ) -> ( -e A *e +oo ) = -e ( A *e +oo ) ) |
| 5 | xnegcl | |- ( A e. RR* -> -e A e. RR* ) |
|
| 6 | xlt0neg1 | |- ( A e. RR* -> ( A < 0 <-> 0 < -e A ) ) |
|
| 7 | 6 | biimpa | |- ( ( A e. RR* /\ A < 0 ) -> 0 < -e A ) |
| 8 | xmulpnf1 | |- ( ( -e A e. RR* /\ 0 < -e A ) -> ( -e A *e +oo ) = +oo ) |
|
| 9 | 5 7 8 | syl2an2r | |- ( ( A e. RR* /\ A < 0 ) -> ( -e A *e +oo ) = +oo ) |
| 10 | 4 9 | eqtr3d | |- ( ( A e. RR* /\ A < 0 ) -> -e ( A *e +oo ) = +oo ) |
| 11 | xnegmnf | |- -e -oo = +oo |
|
| 12 | 10 11 | eqtr4di | |- ( ( A e. RR* /\ A < 0 ) -> -e ( A *e +oo ) = -e -oo ) |
| 13 | xmulcl | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A *e +oo ) e. RR* ) |
|
| 14 | 1 2 13 | sylancl | |- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) e. RR* ) |
| 15 | mnfxr | |- -oo e. RR* |
|
| 16 | xneg11 | |- ( ( ( A *e +oo ) e. RR* /\ -oo e. RR* ) -> ( -e ( A *e +oo ) = -e -oo <-> ( A *e +oo ) = -oo ) ) |
|
| 17 | 14 15 16 | sylancl | |- ( ( A e. RR* /\ A < 0 ) -> ( -e ( A *e +oo ) = -e -oo <-> ( A *e +oo ) = -oo ) ) |
| 18 | 12 17 | mpbid | |- ( ( A e. RR* /\ A < 0 ) -> ( A *e +oo ) = -oo ) |