This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The extended real multiplication when both arguments are real. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rexmul | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | renepnf | |- ( A e. RR -> A =/= +oo ) |
|
| 2 | 1 | adantr | |- ( ( A e. RR /\ B e. RR ) -> A =/= +oo ) |
| 3 | 2 | necon2bi | |- ( A = +oo -> -. ( A e. RR /\ B e. RR ) ) |
| 4 | 3 | adantl | |- ( ( 0 < B /\ A = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 5 | renemnf | |- ( A e. RR -> A =/= -oo ) |
|
| 6 | 5 | adantr | |- ( ( A e. RR /\ B e. RR ) -> A =/= -oo ) |
| 7 | 6 | necon2bi | |- ( A = -oo -> -. ( A e. RR /\ B e. RR ) ) |
| 8 | 7 | adantl | |- ( ( B < 0 /\ A = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 9 | 4 8 | jaoi | |- ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 10 | renepnf | |- ( B e. RR -> B =/= +oo ) |
|
| 11 | 10 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B =/= +oo ) |
| 12 | 11 | necon2bi | |- ( B = +oo -> -. ( A e. RR /\ B e. RR ) ) |
| 13 | 12 | adantl | |- ( ( 0 < A /\ B = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 14 | renemnf | |- ( B e. RR -> B =/= -oo ) |
|
| 15 | 14 | adantl | |- ( ( A e. RR /\ B e. RR ) -> B =/= -oo ) |
| 16 | 15 | necon2bi | |- ( B = -oo -> -. ( A e. RR /\ B e. RR ) ) |
| 17 | 16 | adantl | |- ( ( A < 0 /\ B = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 18 | 13 17 | jaoi | |- ( ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 19 | 9 18 | jaoi | |- ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 20 | 19 | con2i | |- ( ( A e. RR /\ B e. RR ) -> -. ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) ) |
| 21 | 20 | iffalsed | |- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) |
| 22 | 7 | adantl | |- ( ( 0 < B /\ A = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 23 | 3 | adantl | |- ( ( B < 0 /\ A = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 24 | 22 23 | jaoi | |- ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 25 | 16 | adantl | |- ( ( 0 < A /\ B = -oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 26 | 12 | adantl | |- ( ( A < 0 /\ B = +oo ) -> -. ( A e. RR /\ B e. RR ) ) |
| 27 | 25 26 | jaoi | |- ( ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 28 | 24 27 | jaoi | |- ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) -> -. ( A e. RR /\ B e. RR ) ) |
| 29 | 28 | con2i | |- ( ( A e. RR /\ B e. RR ) -> -. ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) ) |
| 30 | 29 | iffalsed | |- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) = ( A x. B ) ) |
| 31 | 21 30 | eqtrd | |- ( ( A e. RR /\ B e. RR ) -> if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) = ( A x. B ) ) |
| 32 | 31 | ifeq2d | |- ( ( A e. RR /\ B e. RR ) -> if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
| 33 | rexr | |- ( A e. RR -> A e. RR* ) |
|
| 34 | rexr | |- ( B e. RR -> B e. RR* ) |
|
| 35 | xmulval | |- ( ( A e. RR* /\ B e. RR* ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
|
| 36 | 33 34 35 | syl2an | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = if ( ( A = 0 \/ B = 0 ) , 0 , if ( ( ( ( 0 < B /\ A = +oo ) \/ ( B < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ B = +oo ) \/ ( A < 0 /\ B = -oo ) ) ) , +oo , if ( ( ( ( 0 < B /\ A = -oo ) \/ ( B < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ B = -oo ) \/ ( A < 0 /\ B = +oo ) ) ) , -oo , ( A x. B ) ) ) ) ) |
| 37 | ifid | |- if ( ( A = 0 \/ B = 0 ) , ( A x. B ) , ( A x. B ) ) = ( A x. B ) |
|
| 38 | oveq1 | |- ( A = 0 -> ( A x. B ) = ( 0 x. B ) ) |
|
| 39 | mul02lem2 | |- ( B e. RR -> ( 0 x. B ) = 0 ) |
|
| 40 | 39 | adantl | |- ( ( A e. RR /\ B e. RR ) -> ( 0 x. B ) = 0 ) |
| 41 | 38 40 | sylan9eqr | |- ( ( ( A e. RR /\ B e. RR ) /\ A = 0 ) -> ( A x. B ) = 0 ) |
| 42 | oveq2 | |- ( B = 0 -> ( A x. B ) = ( A x. 0 ) ) |
|
| 43 | recn | |- ( A e. RR -> A e. CC ) |
|
| 44 | 43 | mul01d | |- ( A e. RR -> ( A x. 0 ) = 0 ) |
| 45 | 44 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( A x. 0 ) = 0 ) |
| 46 | 42 45 | sylan9eqr | |- ( ( ( A e. RR /\ B e. RR ) /\ B = 0 ) -> ( A x. B ) = 0 ) |
| 47 | 41 46 | jaodan | |- ( ( ( A e. RR /\ B e. RR ) /\ ( A = 0 \/ B = 0 ) ) -> ( A x. B ) = 0 ) |
| 48 | 47 | ifeq1da | |- ( ( A e. RR /\ B e. RR ) -> if ( ( A = 0 \/ B = 0 ) , ( A x. B ) , ( A x. B ) ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
| 49 | 37 48 | eqtr3id | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) = if ( ( A = 0 \/ B = 0 ) , 0 , ( A x. B ) ) ) |
| 50 | 32 36 49 | 3eqtr4d | |- ( ( A e. RR /\ B e. RR ) -> ( A *e B ) = ( A x. B ) ) |