This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication by plus infinity on the right. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmulpnf1 | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pnfxr | |- +oo e. RR* |
|
| 2 | xmulval | |- ( ( A e. RR* /\ +oo e. RR* ) -> ( A *e +oo ) = if ( ( A = 0 \/ +oo = 0 ) , 0 , if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR* -> ( A *e +oo ) = if ( ( A = 0 \/ +oo = 0 ) , 0 , if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) ) ) |
| 4 | 3 | adantr | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = if ( ( A = 0 \/ +oo = 0 ) , 0 , if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) ) ) |
| 5 | 0xr | |- 0 e. RR* |
|
| 6 | xrltne | |- ( ( 0 e. RR* /\ A e. RR* /\ 0 < A ) -> A =/= 0 ) |
|
| 7 | 5 6 | mp3an1 | |- ( ( A e. RR* /\ 0 < A ) -> A =/= 0 ) |
| 8 | 0re | |- 0 e. RR |
|
| 9 | renepnf | |- ( 0 e. RR -> 0 =/= +oo ) |
|
| 10 | 8 9 | ax-mp | |- 0 =/= +oo |
| 11 | 10 | necomi | |- +oo =/= 0 |
| 12 | neanior | |- ( ( A =/= 0 /\ +oo =/= 0 ) <-> -. ( A = 0 \/ +oo = 0 ) ) |
|
| 13 | 7 11 12 | sylanblc | |- ( ( A e. RR* /\ 0 < A ) -> -. ( A = 0 \/ +oo = 0 ) ) |
| 14 | 13 | iffalsed | |- ( ( A e. RR* /\ 0 < A ) -> if ( ( A = 0 \/ +oo = 0 ) , 0 , if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) ) = if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) ) |
| 15 | simpr | |- ( ( A e. RR* /\ 0 < A ) -> 0 < A ) |
|
| 16 | eqid | |- +oo = +oo |
|
| 17 | 15 16 | jctir | |- ( ( A e. RR* /\ 0 < A ) -> ( 0 < A /\ +oo = +oo ) ) |
| 18 | 17 | orcd | |- ( ( A e. RR* /\ 0 < A ) -> ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) |
| 19 | 18 | olcd | |- ( ( A e. RR* /\ 0 < A ) -> ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) ) |
| 20 | 19 | iftrued | |- ( ( A e. RR* /\ 0 < A ) -> if ( ( ( ( 0 < +oo /\ A = +oo ) \/ ( +oo < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ +oo = +oo ) \/ ( A < 0 /\ +oo = -oo ) ) ) , +oo , if ( ( ( ( 0 < +oo /\ A = -oo ) \/ ( +oo < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ +oo = -oo ) \/ ( A < 0 /\ +oo = +oo ) ) ) , -oo , ( A x. +oo ) ) ) = +oo ) |
| 21 | 4 14 20 | 3eqtrd | |- ( ( A e. RR* /\ 0 < A ) -> ( A *e +oo ) = +oo ) |