This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of lemul2a . (Contributed by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xlemul2a | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( C *e A ) <_ ( C *e B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xlemul1a | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) <_ ( B *e C ) ) |
|
| 2 | simpl1 | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> A e. RR* ) |
|
| 3 | simpl3l | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> C e. RR* ) |
|
| 4 | xmulcom | |- ( ( A e. RR* /\ C e. RR* ) -> ( A *e C ) = ( C *e A ) ) |
|
| 5 | 2 3 4 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( A *e C ) = ( C *e A ) ) |
| 6 | simpl2 | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> B e. RR* ) |
|
| 7 | xmulcom | |- ( ( B e. RR* /\ C e. RR* ) -> ( B *e C ) = ( C *e B ) ) |
|
| 8 | 6 3 7 | syl2anc | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( B *e C ) = ( C *e B ) ) |
| 9 | 1 5 8 | 3brtr3d | |- ( ( ( A e. RR* /\ B e. RR* /\ ( C e. RR* /\ 0 <_ C ) ) /\ A <_ B ) -> ( C *e A ) <_ ( C *e B ) ) |