This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No extended real is less than minus infinity. (Contributed by NM, 15-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nltmnf | |- ( A e. RR* -> -. A < -oo ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mnfnre | |- -oo e/ RR |
|
| 2 | 1 | neli | |- -. -oo e. RR |
| 3 | 2 | intnan | |- -. ( A e. RR /\ -oo e. RR ) |
| 4 | 3 | intnanr | |- -. ( ( A e. RR /\ -oo e. RR ) /\ A |
| 5 | pnfnemnf | |- +oo =/= -oo |
|
| 6 | 5 | nesymi | |- -. -oo = +oo |
| 7 | 6 | intnan | |- -. ( A = -oo /\ -oo = +oo ) |
| 8 | 4 7 | pm3.2ni | |- -. ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 9 | 6 | intnan | |- -. ( A e. RR /\ -oo = +oo ) |
| 10 | 2 | intnan | |- -. ( A = -oo /\ -oo e. RR ) |
| 11 | 9 10 | pm3.2ni | |- -. ( ( A e. RR /\ -oo = +oo ) \/ ( A = -oo /\ -oo e. RR ) ) |
| 12 | 8 11 | pm3.2ni | |- -. ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 13 | mnfxr | |- -oo e. RR* |
|
| 14 | ltxr | |- ( ( A e. RR* /\ -oo e. RR* ) -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
|
| 15 | 13 14 | mpan2 | |- ( A e. RR* -> ( A < -oo <-> ( ( ( ( A e. RR /\ -oo e. RR ) /\ A |
| 16 | 12 15 | mtbiri | |- ( A e. RR* -> -. A < -oo ) |