This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Extended real version of mul01 . (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xmul01 | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0xr | |- 0 e. RR* |
|
| 2 | xmulval | |- ( ( A e. RR* /\ 0 e. RR* ) -> ( A *e 0 ) = if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( A e. RR* -> ( A *e 0 ) = if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) ) |
| 4 | eqid | |- 0 = 0 |
|
| 5 | 4 | olci | |- ( A = 0 \/ 0 = 0 ) |
| 6 | 5 | iftruei | |- if ( ( A = 0 \/ 0 = 0 ) , 0 , if ( ( ( ( 0 < 0 /\ A = +oo ) \/ ( 0 < 0 /\ A = -oo ) ) \/ ( ( 0 < A /\ 0 = +oo ) \/ ( A < 0 /\ 0 = -oo ) ) ) , +oo , if ( ( ( ( 0 < 0 /\ A = -oo ) \/ ( 0 < 0 /\ A = +oo ) ) \/ ( ( 0 < A /\ 0 = -oo ) \/ ( A < 0 /\ 0 = +oo ) ) ) , -oo , ( A x. 0 ) ) ) ) = 0 |
| 7 | 3 6 | eqtrdi | |- ( A e. RR* -> ( A *e 0 ) = 0 ) |