This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Version of elcncf with arguments commuted. (Contributed by Mario Carneiro, 28-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elcncf2 | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elcncf | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) ) ) |
|
| 2 | simplll | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> A C_ CC ) |
|
| 3 | simprl | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> x e. A ) |
|
| 4 | 2 3 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> x e. CC ) |
| 5 | simprr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> w e. A ) |
|
| 6 | 2 5 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> w e. CC ) |
| 7 | 4 6 | abssubd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( abs ` ( x - w ) ) = ( abs ` ( w - x ) ) ) |
| 8 | 7 | breq1d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( abs ` ( x - w ) ) < z <-> ( abs ` ( w - x ) ) < z ) ) |
| 9 | simpllr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> B C_ CC ) |
|
| 10 | simplr | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> F : A --> B ) |
|
| 11 | 10 3 | ffvelcdmd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( F ` x ) e. B ) |
| 12 | 9 11 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( F ` x ) e. CC ) |
| 13 | 10 5 | ffvelcdmd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( F ` w ) e. B ) |
| 14 | 9 13 | sseldd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( F ` w ) e. CC ) |
| 15 | 12 14 | abssubd | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) = ( abs ` ( ( F ` w ) - ( F ` x ) ) ) ) |
| 16 | 15 | breq1d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y <-> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) |
| 17 | 8 16 | imbi12d | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ ( x e. A /\ w e. A ) ) -> ( ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 18 | 17 | anassrs | |- ( ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ x e. A ) /\ w e. A ) -> ( ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 19 | 18 | ralbidva | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ x e. A ) -> ( A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 20 | 19 | rexbidv | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ x e. A ) -> ( E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 21 | 20 | ralbidv | |- ( ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) /\ x e. A ) -> ( A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 22 | 21 | ralbidva | |- ( ( ( A C_ CC /\ B C_ CC ) /\ F : A --> B ) -> ( A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) <-> A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) |
| 23 | 22 | pm5.32da | |- ( ( A C_ CC /\ B C_ CC ) -> ( ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( x - w ) ) < z -> ( abs ` ( ( F ` x ) - ( F ` w ) ) ) < y ) ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |
| 24 | 1 23 | bitrd | |- ( ( A C_ CC /\ B C_ CC ) -> ( F e. ( A -cn-> B ) <-> ( F : A --> B /\ A. x e. A A. y e. RR+ E. z e. RR+ A. w e. A ( ( abs ` ( w - x ) ) < z -> ( abs ` ( ( F ` w ) - ( F ` x ) ) ) < y ) ) ) ) |