This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Absolute value of a nonnegative difference. (Contributed by NM, 14-Feb-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | abssubge0 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubcl | |- ( ( B e. RR /\ A e. RR ) -> ( B - A ) e. RR ) |
|
| 2 | 1 | 3adant3 | |- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( B - A ) e. RR ) |
| 3 | subge0 | |- ( ( B e. RR /\ A e. RR ) -> ( 0 <_ ( B - A ) <-> A <_ B ) ) |
|
| 4 | 3 | biimp3ar | |- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> 0 <_ ( B - A ) ) |
| 5 | absid | |- ( ( ( B - A ) e. RR /\ 0 <_ ( B - A ) ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
|
| 6 | 2 4 5 | syl2anc | |- ( ( B e. RR /\ A e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |
| 7 | 6 | 3com12 | |- ( ( A e. RR /\ B e. RR /\ A <_ B ) -> ( abs ` ( B - A ) ) = ( B - A ) ) |