This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014) (Proof shortened by AV, 1-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| Assertion | vitalilem1 | |- .~ Er ( 0 [,] 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| 2 | 1 | relopabiv | |- Rel .~ |
| 3 | simplr | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> v e. ( 0 [,] 1 ) ) |
|
| 4 | simpll | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> u e. ( 0 [,] 1 ) ) |
|
| 5 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 6 | 5 | sseli | |- ( u e. ( 0 [,] 1 ) -> u e. RR ) |
| 7 | 6 | recnd | |- ( u e. ( 0 [,] 1 ) -> u e. CC ) |
| 8 | 7 | ad2antrr | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> u e. CC ) |
| 9 | 5 | sseli | |- ( v e. ( 0 [,] 1 ) -> v e. RR ) |
| 10 | 9 | recnd | |- ( v e. ( 0 [,] 1 ) -> v e. CC ) |
| 11 | 10 | ad2antlr | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> v e. CC ) |
| 12 | 8 11 | negsubdi2d | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> -u ( u - v ) = ( v - u ) ) |
| 13 | qnegcl | |- ( ( u - v ) e. QQ -> -u ( u - v ) e. QQ ) |
|
| 14 | 13 | adantl | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> -u ( u - v ) e. QQ ) |
| 15 | 12 14 | eqeltrrd | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> ( v - u ) e. QQ ) |
| 16 | 3 4 15 | jca31 | |- ( ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) -> ( ( v e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) /\ ( v - u ) e. QQ ) ) |
| 17 | oveq12 | |- ( ( x = u /\ y = v ) -> ( x - y ) = ( u - v ) ) |
|
| 18 | 17 | eleq1d | |- ( ( x = u /\ y = v ) -> ( ( x - y ) e. QQ <-> ( u - v ) e. QQ ) ) |
| 19 | 18 1 | brab2a | |- ( u .~ v <-> ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) ) |
| 20 | oveq12 | |- ( ( x = v /\ y = u ) -> ( x - y ) = ( v - u ) ) |
|
| 21 | 20 | eleq1d | |- ( ( x = v /\ y = u ) -> ( ( x - y ) e. QQ <-> ( v - u ) e. QQ ) ) |
| 22 | 21 1 | brab2a | |- ( v .~ u <-> ( ( v e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) /\ ( v - u ) e. QQ ) ) |
| 23 | 16 19 22 | 3imtr4i | |- ( u .~ v -> v .~ u ) |
| 24 | simpl | |- ( ( u .~ v /\ v .~ w ) -> u .~ v ) |
|
| 25 | 24 19 | sylib | |- ( ( u .~ v /\ v .~ w ) -> ( ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) /\ ( u - v ) e. QQ ) ) |
| 26 | 25 | simpld | |- ( ( u .~ v /\ v .~ w ) -> ( u e. ( 0 [,] 1 ) /\ v e. ( 0 [,] 1 ) ) ) |
| 27 | 26 | simpld | |- ( ( u .~ v /\ v .~ w ) -> u e. ( 0 [,] 1 ) ) |
| 28 | simpr | |- ( ( u .~ v /\ v .~ w ) -> v .~ w ) |
|
| 29 | oveq12 | |- ( ( x = v /\ y = w ) -> ( x - y ) = ( v - w ) ) |
|
| 30 | 29 | eleq1d | |- ( ( x = v /\ y = w ) -> ( ( x - y ) e. QQ <-> ( v - w ) e. QQ ) ) |
| 31 | 30 1 | brab2a | |- ( v .~ w <-> ( ( v e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) /\ ( v - w ) e. QQ ) ) |
| 32 | 28 31 | sylib | |- ( ( u .~ v /\ v .~ w ) -> ( ( v e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) /\ ( v - w ) e. QQ ) ) |
| 33 | 32 | simpld | |- ( ( u .~ v /\ v .~ w ) -> ( v e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) ) |
| 34 | 33 | simprd | |- ( ( u .~ v /\ v .~ w ) -> w e. ( 0 [,] 1 ) ) |
| 35 | 27 7 | syl | |- ( ( u .~ v /\ v .~ w ) -> u e. CC ) |
| 36 | 25 11 | syl | |- ( ( u .~ v /\ v .~ w ) -> v e. CC ) |
| 37 | 5 34 | sselid | |- ( ( u .~ v /\ v .~ w ) -> w e. RR ) |
| 38 | 37 | recnd | |- ( ( u .~ v /\ v .~ w ) -> w e. CC ) |
| 39 | 35 36 38 | npncand | |- ( ( u .~ v /\ v .~ w ) -> ( ( u - v ) + ( v - w ) ) = ( u - w ) ) |
| 40 | 25 | simprd | |- ( ( u .~ v /\ v .~ w ) -> ( u - v ) e. QQ ) |
| 41 | 32 | simprd | |- ( ( u .~ v /\ v .~ w ) -> ( v - w ) e. QQ ) |
| 42 | qaddcl | |- ( ( ( u - v ) e. QQ /\ ( v - w ) e. QQ ) -> ( ( u - v ) + ( v - w ) ) e. QQ ) |
|
| 43 | 40 41 42 | syl2anc | |- ( ( u .~ v /\ v .~ w ) -> ( ( u - v ) + ( v - w ) ) e. QQ ) |
| 44 | 39 43 | eqeltrrd | |- ( ( u .~ v /\ v .~ w ) -> ( u - w ) e. QQ ) |
| 45 | oveq12 | |- ( ( x = u /\ y = w ) -> ( x - y ) = ( u - w ) ) |
|
| 46 | 45 | eleq1d | |- ( ( x = u /\ y = w ) -> ( ( x - y ) e. QQ <-> ( u - w ) e. QQ ) ) |
| 47 | 46 1 | brab2a | |- ( u .~ w <-> ( ( u e. ( 0 [,] 1 ) /\ w e. ( 0 [,] 1 ) ) /\ ( u - w ) e. QQ ) ) |
| 48 | 27 34 44 47 | syl21anbrc | |- ( ( u .~ v /\ v .~ w ) -> u .~ w ) |
| 49 | 7 | subidd | |- ( u e. ( 0 [,] 1 ) -> ( u - u ) = 0 ) |
| 50 | 0z | |- 0 e. ZZ |
|
| 51 | zq | |- ( 0 e. ZZ -> 0 e. QQ ) |
|
| 52 | 50 51 | ax-mp | |- 0 e. QQ |
| 53 | 49 52 | eqeltrdi | |- ( u e. ( 0 [,] 1 ) -> ( u - u ) e. QQ ) |
| 54 | 53 | adantr | |- ( ( u e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) -> ( u - u ) e. QQ ) |
| 55 | 54 | pm4.71i | |- ( ( u e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) <-> ( ( u e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) /\ ( u - u ) e. QQ ) ) |
| 56 | pm4.24 | |- ( u e. ( 0 [,] 1 ) <-> ( u e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) ) |
|
| 57 | oveq12 | |- ( ( x = u /\ y = u ) -> ( x - y ) = ( u - u ) ) |
|
| 58 | 57 | eleq1d | |- ( ( x = u /\ y = u ) -> ( ( x - y ) e. QQ <-> ( u - u ) e. QQ ) ) |
| 59 | 58 1 | brab2a | |- ( u .~ u <-> ( ( u e. ( 0 [,] 1 ) /\ u e. ( 0 [,] 1 ) ) /\ ( u - u ) e. QQ ) ) |
| 60 | 55 56 59 | 3bitr4i | |- ( u e. ( 0 [,] 1 ) <-> u .~ u ) |
| 61 | 2 23 48 60 | iseri | |- .~ Er ( 0 [,] 1 ) |