This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is countably sub-additive. (This version is a little easier to read, but does not allow infinite values like ovoliun .) (Contributed by Mario Carneiro, 12-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
||
| ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
||
| ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
||
| ovoliun2.t | |- ( ph -> T e. dom ~~> ) |
||
| Assertion | ovoliun2 | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sum_ n e. NN ( vol* ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovoliun.t | |- T = seq 1 ( + , G ) |
|
| 2 | ovoliun.g | |- G = ( n e. NN |-> ( vol* ` A ) ) |
|
| 3 | ovoliun.a | |- ( ( ph /\ n e. NN ) -> A C_ RR ) |
|
| 4 | ovoliun.v | |- ( ( ph /\ n e. NN ) -> ( vol* ` A ) e. RR ) |
|
| 5 | ovoliun2.t | |- ( ph -> T e. dom ~~> ) |
|
| 6 | 1 2 3 4 | ovoliun | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sup ( ran T , RR* , < ) ) |
| 7 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 8 | 1zzd | |- ( ph -> 1 e. ZZ ) |
|
| 9 | fvex | |- ( vol* ` [_ m / n ]_ A ) e. _V |
|
| 10 | nfcv | |- F/_ m ( vol* ` A ) |
|
| 11 | nfcv | |- F/_ n vol* |
|
| 12 | nfcsb1v | |- F/_ n [_ m / n ]_ A |
|
| 13 | 11 12 | nffv | |- F/_ n ( vol* ` [_ m / n ]_ A ) |
| 14 | csbeq1a | |- ( n = m -> A = [_ m / n ]_ A ) |
|
| 15 | 14 | fveq2d | |- ( n = m -> ( vol* ` A ) = ( vol* ` [_ m / n ]_ A ) ) |
| 16 | 10 13 15 | cbvmpt | |- ( n e. NN |-> ( vol* ` A ) ) = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
| 17 | 2 16 | eqtri | |- G = ( m e. NN |-> ( vol* ` [_ m / n ]_ A ) ) |
| 18 | 17 | fvmpt2 | |- ( ( m e. NN /\ ( vol* ` [_ m / n ]_ A ) e. _V ) -> ( G ` m ) = ( vol* ` [_ m / n ]_ A ) ) |
| 19 | 9 18 | mpan2 | |- ( m e. NN -> ( G ` m ) = ( vol* ` [_ m / n ]_ A ) ) |
| 20 | 19 | adantl | |- ( ( ph /\ m e. NN ) -> ( G ` m ) = ( vol* ` [_ m / n ]_ A ) ) |
| 21 | 4 | ralrimiva | |- ( ph -> A. n e. NN ( vol* ` A ) e. RR ) |
| 22 | 10 | nfel1 | |- F/ m ( vol* ` A ) e. RR |
| 23 | 13 | nfel1 | |- F/ n ( vol* ` [_ m / n ]_ A ) e. RR |
| 24 | 15 | eleq1d | |- ( n = m -> ( ( vol* ` A ) e. RR <-> ( vol* ` [_ m / n ]_ A ) e. RR ) ) |
| 25 | 22 23 24 | cbvralw | |- ( A. n e. NN ( vol* ` A ) e. RR <-> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 26 | 21 25 | sylib | |- ( ph -> A. m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 27 | 26 | r19.21bi | |- ( ( ph /\ m e. NN ) -> ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 28 | 20 27 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) |
| 29 | 7 8 28 | serfre | |- ( ph -> seq 1 ( + , G ) : NN --> RR ) |
| 30 | 1 | feq1i | |- ( T : NN --> RR <-> seq 1 ( + , G ) : NN --> RR ) |
| 31 | 29 30 | sylibr | |- ( ph -> T : NN --> RR ) |
| 32 | 31 | frnd | |- ( ph -> ran T C_ RR ) |
| 33 | 1nn | |- 1 e. NN |
|
| 34 | 31 | fdmd | |- ( ph -> dom T = NN ) |
| 35 | 33 34 | eleqtrrid | |- ( ph -> 1 e. dom T ) |
| 36 | 35 | ne0d | |- ( ph -> dom T =/= (/) ) |
| 37 | dm0rn0 | |- ( dom T = (/) <-> ran T = (/) ) |
|
| 38 | 37 | necon3bii | |- ( dom T =/= (/) <-> ran T =/= (/) ) |
| 39 | 36 38 | sylib | |- ( ph -> ran T =/= (/) ) |
| 40 | 1 5 | eqeltrrid | |- ( ph -> seq 1 ( + , G ) e. dom ~~> ) |
| 41 | 7 8 20 27 40 | isumrecl | |- ( ph -> sum_ m e. NN ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 42 | elfznn | |- ( m e. ( 1 ... k ) -> m e. NN ) |
|
| 43 | 42 | adantl | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> m e. NN ) |
| 44 | 43 19 | syl | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( G ` m ) = ( vol* ` [_ m / n ]_ A ) ) |
| 45 | simpr | |- ( ( ph /\ k e. NN ) -> k e. NN ) |
|
| 46 | 45 7 | eleqtrdi | |- ( ( ph /\ k e. NN ) -> k e. ( ZZ>= ` 1 ) ) |
| 47 | simpl | |- ( ( ph /\ k e. NN ) -> ph ) |
|
| 48 | 47 42 27 | syl2an | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( vol* ` [_ m / n ]_ A ) e. RR ) |
| 49 | 48 | recnd | |- ( ( ( ph /\ k e. NN ) /\ m e. ( 1 ... k ) ) -> ( vol* ` [_ m / n ]_ A ) e. CC ) |
| 50 | 44 46 49 | fsumser | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( vol* ` [_ m / n ]_ A ) = ( seq 1 ( + , G ) ` k ) ) |
| 51 | 1 | fveq1i | |- ( T ` k ) = ( seq 1 ( + , G ) ` k ) |
| 52 | 50 51 | eqtr4di | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( vol* ` [_ m / n ]_ A ) = ( T ` k ) ) |
| 53 | fzfid | |- ( ph -> ( 1 ... k ) e. Fin ) |
|
| 54 | fz1ssnn | |- ( 1 ... k ) C_ NN |
|
| 55 | 54 | a1i | |- ( ph -> ( 1 ... k ) C_ NN ) |
| 56 | 3 | ralrimiva | |- ( ph -> A. n e. NN A C_ RR ) |
| 57 | nfv | |- F/ m A C_ RR |
|
| 58 | nfcv | |- F/_ n RR |
|
| 59 | 12 58 | nfss | |- F/ n [_ m / n ]_ A C_ RR |
| 60 | 14 | sseq1d | |- ( n = m -> ( A C_ RR <-> [_ m / n ]_ A C_ RR ) ) |
| 61 | 57 59 60 | cbvralw | |- ( A. n e. NN A C_ RR <-> A. m e. NN [_ m / n ]_ A C_ RR ) |
| 62 | 56 61 | sylib | |- ( ph -> A. m e. NN [_ m / n ]_ A C_ RR ) |
| 63 | 62 | r19.21bi | |- ( ( ph /\ m e. NN ) -> [_ m / n ]_ A C_ RR ) |
| 64 | ovolge0 | |- ( [_ m / n ]_ A C_ RR -> 0 <_ ( vol* ` [_ m / n ]_ A ) ) |
|
| 65 | 63 64 | syl | |- ( ( ph /\ m e. NN ) -> 0 <_ ( vol* ` [_ m / n ]_ A ) ) |
| 66 | 7 8 53 55 20 27 65 40 | isumless | |- ( ph -> sum_ m e. ( 1 ... k ) ( vol* ` [_ m / n ]_ A ) <_ sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) |
| 67 | 66 | adantr | |- ( ( ph /\ k e. NN ) -> sum_ m e. ( 1 ... k ) ( vol* ` [_ m / n ]_ A ) <_ sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) |
| 68 | 52 67 | eqbrtrrd | |- ( ( ph /\ k e. NN ) -> ( T ` k ) <_ sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) |
| 69 | 68 | ralrimiva | |- ( ph -> A. k e. NN ( T ` k ) <_ sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) |
| 70 | brralrspcev | |- ( ( sum_ m e. NN ( vol* ` [_ m / n ]_ A ) e. RR /\ A. k e. NN ( T ` k ) <_ sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) -> E. x e. RR A. k e. NN ( T ` k ) <_ x ) |
|
| 71 | 41 69 70 | syl2anc | |- ( ph -> E. x e. RR A. k e. NN ( T ` k ) <_ x ) |
| 72 | 31 | ffnd | |- ( ph -> T Fn NN ) |
| 73 | breq1 | |- ( z = ( T ` k ) -> ( z <_ x <-> ( T ` k ) <_ x ) ) |
|
| 74 | 73 | ralrn | |- ( T Fn NN -> ( A. z e. ran T z <_ x <-> A. k e. NN ( T ` k ) <_ x ) ) |
| 75 | 72 74 | syl | |- ( ph -> ( A. z e. ran T z <_ x <-> A. k e. NN ( T ` k ) <_ x ) ) |
| 76 | 75 | rexbidv | |- ( ph -> ( E. x e. RR A. z e. ran T z <_ x <-> E. x e. RR A. k e. NN ( T ` k ) <_ x ) ) |
| 77 | 71 76 | mpbird | |- ( ph -> E. x e. RR A. z e. ran T z <_ x ) |
| 78 | supxrre | |- ( ( ran T C_ RR /\ ran T =/= (/) /\ E. x e. RR A. z e. ran T z <_ x ) -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
|
| 79 | 32 39 77 78 | syl3anc | |- ( ph -> sup ( ran T , RR* , < ) = sup ( ran T , RR , < ) ) |
| 80 | 7 1 8 20 27 65 71 | isumsup | |- ( ph -> sum_ m e. NN ( vol* ` [_ m / n ]_ A ) = sup ( ran T , RR , < ) ) |
| 81 | 79 80 | eqtr4d | |- ( ph -> sup ( ran T , RR* , < ) = sum_ m e. NN ( vol* ` [_ m / n ]_ A ) ) |
| 82 | 15 10 13 | cbvsum | |- sum_ n e. NN ( vol* ` A ) = sum_ m e. NN ( vol* ` [_ m / n ]_ A ) |
| 83 | 81 82 | eqtr4di | |- ( ph -> sup ( ran T , RR* , < ) = sum_ n e. NN ( vol* ` A ) ) |
| 84 | 6 83 | breqtrd | |- ( ph -> ( vol* ` U_ n e. NN A ) <_ sum_ n e. NN ( vol* ` A ) ) |