This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) Lemma 565Ca of Fremlin5 p. 213. (Contributed by Mario Carneiro, 26-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| Assertion | uniioovol | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 5 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 6 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 7 | 5 6 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 8 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 9 | 1 7 8 | sylancl | |- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 10 | fco | |- ( ( (,) : ( RR* X. RR* ) --> ~P RR /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) : NN --> ~P RR ) |
|
| 11 | 4 9 10 | sylancr | |- ( ph -> ( (,) o. F ) : NN --> ~P RR ) |
| 12 | 11 | frnd | |- ( ph -> ran ( (,) o. F ) C_ ~P RR ) |
| 13 | sspwuni | |- ( ran ( (,) o. F ) C_ ~P RR <-> U. ran ( (,) o. F ) C_ RR ) |
|
| 14 | 12 13 | sylib | |- ( ph -> U. ran ( (,) o. F ) C_ RR ) |
| 15 | ovolcl | |- ( U. ran ( (,) o. F ) C_ RR -> ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) |
|
| 16 | 14 15 | syl | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) |
| 17 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 18 | 17 3 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 19 | frn | |- ( S : NN --> ( 0 [,) +oo ) -> ran S C_ ( 0 [,) +oo ) ) |
|
| 20 | 1 18 19 | 3syl | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 21 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 22 | 20 21 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 23 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 24 | 22 23 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 25 | ssid | |- U. ran ( (,) o. F ) C_ U. ran ( (,) o. F ) |
|
| 26 | 3 | ovollb | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( (,) o. F ) C_ U. ran ( (,) o. F ) ) -> ( vol* ` U. ran ( (,) o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 27 | 1 25 26 | sylancl | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 28 | 3 | fveq1i | |- ( S ` n ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` n ) |
| 29 | 1 | adantr | |- ( ( ph /\ n e. NN ) -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
| 30 | elfznn | |- ( x e. ( 1 ... n ) -> x e. NN ) |
|
| 31 | 17 | ovolfsval | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 32 | 29 30 31 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 33 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
|
| 34 | 29 30 33 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
| 35 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 36 | 29 30 35 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
| 37 | 36 | elin2d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) e. ( RR X. RR ) ) |
| 38 | 1st2nd2 | |- ( ( F ` x ) e. ( RR X. RR ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
|
| 39 | 37 38 | syl | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 40 | 39 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( (,) ` ( F ` x ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
| 41 | df-ov | |- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
|
| 42 | 40 41 | eqtr4di | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( (,) ` ( F ` x ) ) = ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) |
| 43 | 34 42 | eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) = ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) |
| 44 | ioombl | |- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) e. dom vol |
|
| 45 | 43 44 | eqeltrdi | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( (,) o. F ) ` x ) e. dom vol ) |
| 46 | mblvol | |- ( ( ( (,) o. F ) ` x ) e. dom vol -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( (,) o. F ) ` x ) ) ) |
|
| 47 | 45 46 | syl | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( (,) o. F ) ` x ) ) ) |
| 48 | 43 | fveq2d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol* ` ( ( (,) o. F ) ` x ) ) = ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) ) |
| 49 | ovolfcl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
|
| 50 | 29 30 49 | syl2an | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) ) |
| 51 | ovolioo | |- ( ( ( 1st ` ( F ` x ) ) e. RR /\ ( 2nd ` ( F ` x ) ) e. RR /\ ( 1st ` ( F ` x ) ) <_ ( 2nd ` ( F ` x ) ) ) -> ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
|
| 52 | 50 51 | syl | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol* ` ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 53 | 47 48 52 | 3eqtrd | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) = ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) ) |
| 54 | 32 53 | eqtr4d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( abs o. - ) o. F ) ` x ) = ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 55 | simpr | |- ( ( ph /\ n e. NN ) -> n e. NN ) |
|
| 56 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 57 | 55 56 | eleqtrdi | |- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
| 58 | 50 | simp2d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( 2nd ` ( F ` x ) ) e. RR ) |
| 59 | 50 | simp1d | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( 1st ` ( F ` x ) ) e. RR ) |
| 60 | 58 59 | resubcld | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( 2nd ` ( F ` x ) ) - ( 1st ` ( F ` x ) ) ) e. RR ) |
| 61 | 53 60 | eqeltrd | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) |
| 62 | 61 | recnd | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( vol ` ( ( (,) o. F ) ` x ) ) e. CC ) |
| 63 | 54 57 62 | fsumser | |- ( ( ph /\ n e. NN ) -> sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) = ( seq 1 ( + , ( ( abs o. - ) o. F ) ) ` n ) ) |
| 64 | 28 63 | eqtr4id | |- ( ( ph /\ n e. NN ) -> ( S ` n ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 65 | fzfid | |- ( ( ph /\ n e. NN ) -> ( 1 ... n ) e. Fin ) |
|
| 66 | 45 61 | jca | |- ( ( ( ph /\ n e. NN ) /\ x e. ( 1 ... n ) ) -> ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) ) |
| 67 | 66 | ralrimiva | |- ( ( ph /\ n e. NN ) -> A. x e. ( 1 ... n ) ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) ) |
| 68 | fz1ssnn | |- ( 1 ... n ) C_ NN |
|
| 69 | 1 33 | sylan | |- ( ( ph /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
| 70 | 69 | disjeq2dv | |- ( ph -> ( Disj_ x e. NN ( ( (,) o. F ) ` x ) <-> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) ) |
| 71 | 2 70 | mpbird | |- ( ph -> Disj_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 72 | 71 | adantr | |- ( ( ph /\ n e. NN ) -> Disj_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 73 | disjss1 | |- ( ( 1 ... n ) C_ NN -> ( Disj_ x e. NN ( ( (,) o. F ) ` x ) -> Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
|
| 74 | 68 72 73 | mpsyl | |- ( ( ph /\ n e. NN ) -> Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) |
| 75 | volfiniun | |- ( ( ( 1 ... n ) e. Fin /\ A. x e. ( 1 ... n ) ( ( ( (,) o. F ) ` x ) e. dom vol /\ ( vol ` ( ( (,) o. F ) ` x ) ) e. RR ) /\ Disj_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
|
| 76 | 65 67 74 75 | syl3anc | |- ( ( ph /\ n e. NN ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = sum_ x e. ( 1 ... n ) ( vol ` ( ( (,) o. F ) ` x ) ) ) |
| 77 | 45 | ralrimiva | |- ( ( ph /\ n e. NN ) -> A. x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
| 78 | finiunmbl | |- ( ( ( 1 ... n ) e. Fin /\ A. x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
|
| 79 | 65 77 78 | syl2anc | |- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol ) |
| 80 | mblvol | |- ( U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) e. dom vol -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
|
| 81 | 79 80 | syl | |- ( ( ph /\ n e. NN ) -> ( vol ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 82 | 64 76 81 | 3eqtr2d | |- ( ( ph /\ n e. NN ) -> ( S ` n ) = ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) ) |
| 83 | iunss1 | |- ( ( 1 ... n ) C_ NN -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( (,) o. F ) ` x ) ) |
|
| 84 | 68 83 | mp1i | |- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( (,) o. F ) ` x ) ) |
| 85 | 11 | adantr | |- ( ( ph /\ n e. NN ) -> ( (,) o. F ) : NN --> ~P RR ) |
| 86 | ffn | |- ( ( (,) o. F ) : NN --> ~P RR -> ( (,) o. F ) Fn NN ) |
|
| 87 | fniunfv | |- ( ( (,) o. F ) Fn NN -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
|
| 88 | 85 86 87 | 3syl | |- ( ( ph /\ n e. NN ) -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
| 89 | 84 88 | sseqtrd | |- ( ( ph /\ n e. NN ) -> U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U. ran ( (,) o. F ) ) |
| 90 | 14 | adantr | |- ( ( ph /\ n e. NN ) -> U. ran ( (,) o. F ) C_ RR ) |
| 91 | ovolss | |- ( ( U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) C_ U. ran ( (,) o. F ) /\ U. ran ( (,) o. F ) C_ RR ) -> ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
|
| 92 | 89 90 91 | syl2anc | |- ( ( ph /\ n e. NN ) -> ( vol* ` U_ x e. ( 1 ... n ) ( ( (,) o. F ) ` x ) ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 93 | 82 92 | eqbrtrd | |- ( ( ph /\ n e. NN ) -> ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 94 | 93 | ralrimiva | |- ( ph -> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 95 | 1 18 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 96 | ffn | |- ( S : NN --> ( 0 [,) +oo ) -> S Fn NN ) |
|
| 97 | breq1 | |- ( y = ( S ` n ) -> ( y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
|
| 98 | 97 | ralrn | |- ( S Fn NN -> ( A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 99 | 95 96 98 | 3syl | |- ( ph -> ( A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. n e. NN ( S ` n ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 100 | 94 99 | mpbird | |- ( ph -> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 101 | supxrleub | |- ( ( ran S C_ RR* /\ ( vol* ` U. ran ( (,) o. F ) ) e. RR* ) -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
|
| 102 | 22 16 101 | syl2anc | |- ( ph -> ( sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) <-> A. y e. ran S y <_ ( vol* ` U. ran ( (,) o. F ) ) ) ) |
| 103 | 100 102 | mpbird | |- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( (,) o. F ) ) ) |
| 104 | 16 24 27 103 | xrletrid | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) ) |