This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun .) (Contributed by Mario Carneiro, 25-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
||
| uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
||
| Assertion | uniiccvol | |- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) = sup ( ran S , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uniioombl.1 | |- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
|
| 2 | uniioombl.2 | |- ( ph -> Disj_ x e. NN ( (,) ` ( F ` x ) ) ) |
|
| 3 | uniioombl.3 | |- S = seq 1 ( + , ( ( abs o. - ) o. F ) ) |
|
| 4 | ovolficcss | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> U. ran ( [,] o. F ) C_ RR ) |
|
| 5 | 1 4 | syl | |- ( ph -> U. ran ( [,] o. F ) C_ RR ) |
| 6 | ovolcl | |- ( U. ran ( [,] o. F ) C_ RR -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* ) |
|
| 7 | 5 6 | syl | |- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) e. RR* ) |
| 8 | eqid | |- ( ( abs o. - ) o. F ) = ( ( abs o. - ) o. F ) |
|
| 9 | 8 3 | ovolsf | |- ( F : NN --> ( <_ i^i ( RR X. RR ) ) -> S : NN --> ( 0 [,) +oo ) ) |
| 10 | 1 9 | syl | |- ( ph -> S : NN --> ( 0 [,) +oo ) ) |
| 11 | 10 | frnd | |- ( ph -> ran S C_ ( 0 [,) +oo ) ) |
| 12 | icossxr | |- ( 0 [,) +oo ) C_ RR* |
|
| 13 | 11 12 | sstrdi | |- ( ph -> ran S C_ RR* ) |
| 14 | supxrcl | |- ( ran S C_ RR* -> sup ( ran S , RR* , < ) e. RR* ) |
|
| 15 | 13 14 | syl | |- ( ph -> sup ( ran S , RR* , < ) e. RR* ) |
| 16 | ssid | |- U. ran ( [,] o. F ) C_ U. ran ( [,] o. F ) |
|
| 17 | 3 | ovollb2 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ U. ran ( [,] o. F ) C_ U. ran ( [,] o. F ) ) -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 18 | 1 16 17 | sylancl | |- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) <_ sup ( ran S , RR* , < ) ) |
| 19 | 1 2 3 | uniioovol | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) = sup ( ran S , RR* , < ) ) |
| 20 | ioossicc | |- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) C_ ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) ) |
|
| 21 | df-ov | |- ( ( 1st ` ( F ` x ) ) (,) ( 2nd ` ( F ` x ) ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
|
| 22 | df-ov | |- ( ( 1st ` ( F ` x ) ) [,] ( 2nd ` ( F ` x ) ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
|
| 23 | 20 21 22 | 3sstr3i | |- ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 24 | 23 | a1i | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) C_ ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
| 25 | ffvelcdm | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( <_ i^i ( RR X. RR ) ) ) |
|
| 26 | 25 | elin2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) e. ( RR X. RR ) ) |
| 27 | 1st2nd2 | |- ( ( F ` x ) e. ( RR X. RR ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
|
| 28 | 26 27 | syl | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( F ` x ) = <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) |
| 29 | 28 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) = ( (,) ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
| 30 | 28 | fveq2d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( [,] ` ( F ` x ) ) = ( [,] ` <. ( 1st ` ( F ` x ) ) , ( 2nd ` ( F ` x ) ) >. ) ) |
| 31 | 24 29 30 | 3sstr4d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( (,) ` ( F ` x ) ) C_ ( [,] ` ( F ` x ) ) ) |
| 32 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) = ( (,) ` ( F ` x ) ) ) |
|
| 33 | fvco3 | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( [,] o. F ) ` x ) = ( [,] ` ( F ` x ) ) ) |
|
| 34 | 31 32 33 | 3sstr4d | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
| 35 | 1 34 | sylan | |- ( ( ph /\ x e. NN ) -> ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
| 36 | 35 | ralrimiva | |- ( ph -> A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) ) |
| 37 | ss2iun | |- ( A. x e. NN ( ( (,) o. F ) ` x ) C_ ( ( [,] o. F ) ` x ) -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) ) |
|
| 38 | 36 37 | syl | |- ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) C_ U_ x e. NN ( ( [,] o. F ) ` x ) ) |
| 39 | ioof | |- (,) : ( RR* X. RR* ) --> ~P RR |
|
| 40 | ffn | |- ( (,) : ( RR* X. RR* ) --> ~P RR -> (,) Fn ( RR* X. RR* ) ) |
|
| 41 | 39 40 | ax-mp | |- (,) Fn ( RR* X. RR* ) |
| 42 | inss2 | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
|
| 43 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 44 | 42 43 | sstri | |- ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) |
| 45 | fss | |- ( ( F : NN --> ( <_ i^i ( RR X. RR ) ) /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR* X. RR* ) ) -> F : NN --> ( RR* X. RR* ) ) |
|
| 46 | 1 44 45 | sylancl | |- ( ph -> F : NN --> ( RR* X. RR* ) ) |
| 47 | fnfco | |- ( ( (,) Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( (,) o. F ) Fn NN ) |
|
| 48 | 41 46 47 | sylancr | |- ( ph -> ( (,) o. F ) Fn NN ) |
| 49 | fniunfv | |- ( ( (,) o. F ) Fn NN -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
|
| 50 | 48 49 | syl | |- ( ph -> U_ x e. NN ( ( (,) o. F ) ` x ) = U. ran ( (,) o. F ) ) |
| 51 | iccf | |- [,] : ( RR* X. RR* ) --> ~P RR* |
|
| 52 | ffn | |- ( [,] : ( RR* X. RR* ) --> ~P RR* -> [,] Fn ( RR* X. RR* ) ) |
|
| 53 | 51 52 | ax-mp | |- [,] Fn ( RR* X. RR* ) |
| 54 | fnfco | |- ( ( [,] Fn ( RR* X. RR* ) /\ F : NN --> ( RR* X. RR* ) ) -> ( [,] o. F ) Fn NN ) |
|
| 55 | 53 46 54 | sylancr | |- ( ph -> ( [,] o. F ) Fn NN ) |
| 56 | fniunfv | |- ( ( [,] o. F ) Fn NN -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) ) |
|
| 57 | 55 56 | syl | |- ( ph -> U_ x e. NN ( ( [,] o. F ) ` x ) = U. ran ( [,] o. F ) ) |
| 58 | 38 50 57 | 3sstr3d | |- ( ph -> U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) ) |
| 59 | ovolss | |- ( ( U. ran ( (,) o. F ) C_ U. ran ( [,] o. F ) /\ U. ran ( [,] o. F ) C_ RR ) -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
|
| 60 | 58 5 59 | syl2anc | |- ( ph -> ( vol* ` U. ran ( (,) o. F ) ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
| 61 | 19 60 | eqbrtrrd | |- ( ph -> sup ( ran S , RR* , < ) <_ ( vol* ` U. ran ( [,] o. F ) ) ) |
| 62 | 7 15 18 61 | xrletrid | |- ( ph -> ( vol* ` U. ran ( [,] o. F ) ) = sup ( ran S , RR* , < ) ) |