This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The trace of a uniform structure U on a subset A is a uniform structure on A . Definition 3 of BourbakiTop1 p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | trust | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restsspw | |- ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) |
|
| 2 | 1 | a1i | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) ) |
| 3 | inxp | |- ( ( X X. X ) i^i ( A X. A ) ) = ( ( X i^i A ) X. ( X i^i A ) ) |
|
| 4 | sseqin2 | |- ( A C_ X <-> ( X i^i A ) = A ) |
|
| 5 | 4 | biimpi | |- ( A C_ X -> ( X i^i A ) = A ) |
| 6 | 5 | sqxpeqd | |- ( A C_ X -> ( ( X i^i A ) X. ( X i^i A ) ) = ( A X. A ) ) |
| 7 | 3 6 | eqtrid | |- ( A C_ X -> ( ( X X. X ) i^i ( A X. A ) ) = ( A X. A ) ) |
| 8 | 7 | adantl | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( X X. X ) i^i ( A X. A ) ) = ( A X. A ) ) |
| 9 | simpl | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> U e. ( UnifOn ` X ) ) |
|
| 10 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 11 | 10 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> X e. _V ) |
| 12 | simpr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A C_ X ) |
|
| 13 | 11 12 | ssexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A e. _V ) |
| 14 | 13 13 | xpexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( A X. A ) e. _V ) |
| 15 | ustbasel | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
|
| 16 | 15 | adantr | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( X X. X ) e. U ) |
| 17 | elrestr | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ ( X X. X ) e. U ) -> ( ( X X. X ) i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
|
| 18 | 9 14 16 17 | syl3anc | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( X X. X ) i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 19 | 8 18 | eqeltrrd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( A X. A ) e. ( U |`t ( A X. A ) ) ) |
| 20 | 9 | ad5antr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
| 21 | 14 | ad5antr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 22 | simplr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u e. U ) |
|
| 23 | simp-4r | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w e. ~P ( A X. A ) ) |
|
| 24 | 23 | elpwid | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w C_ ( A X. A ) ) |
| 25 | 12 | ad5antr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> A C_ X ) |
| 26 | xpss12 | |- ( ( A C_ X /\ A C_ X ) -> ( A X. A ) C_ ( X X. X ) ) |
|
| 27 | 25 25 26 | syl2anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) C_ ( X X. X ) ) |
| 28 | 24 27 | sstrd | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w C_ ( X X. X ) ) |
| 29 | ustssxp | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> u C_ ( X X. X ) ) |
|
| 30 | 20 22 29 | syl2anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u C_ ( X X. X ) ) |
| 31 | 28 30 | unssd | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. u ) C_ ( X X. X ) ) |
| 32 | ssun2 | |- u C_ ( w u. u ) |
|
| 33 | ustssel | |- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ ( w u. u ) C_ ( X X. X ) ) -> ( u C_ ( w u. u ) -> ( w u. u ) e. U ) ) |
|
| 34 | 32 33 | mpi | |- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ ( w u. u ) C_ ( X X. X ) ) -> ( w u. u ) e. U ) |
| 35 | 20 22 31 34 | syl3anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. u ) e. U ) |
| 36 | dfss2 | |- ( w C_ ( A X. A ) <-> ( w i^i ( A X. A ) ) = w ) |
|
| 37 | 24 36 | sylib | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w i^i ( A X. A ) ) = w ) |
| 38 | 37 | uneq1d | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) = ( w u. ( u i^i ( A X. A ) ) ) ) |
| 39 | simpr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
|
| 40 | simpllr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v C_ w ) |
|
| 41 | 39 40 | eqsstrrd | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( u i^i ( A X. A ) ) C_ w ) |
| 42 | ssequn2 | |- ( ( u i^i ( A X. A ) ) C_ w <-> ( w u. ( u i^i ( A X. A ) ) ) = w ) |
|
| 43 | 41 42 | sylib | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( w u. ( u i^i ( A X. A ) ) ) = w ) |
| 44 | 38 43 | eqtr2d | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w = ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) ) |
| 45 | indir | |- ( ( w u. u ) i^i ( A X. A ) ) = ( ( w i^i ( A X. A ) ) u. ( u i^i ( A X. A ) ) ) |
|
| 46 | 44 45 | eqtr4di | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w = ( ( w u. u ) i^i ( A X. A ) ) ) |
| 47 | ineq1 | |- ( x = ( w u. u ) -> ( x i^i ( A X. A ) ) = ( ( w u. u ) i^i ( A X. A ) ) ) |
|
| 48 | 47 | rspceeqv | |- ( ( ( w u. u ) e. U /\ w = ( ( w u. u ) i^i ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 49 | 35 46 48 | syl2anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 50 | elrest | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( w e. ( U |`t ( A X. A ) ) <-> E. x e. U w = ( x i^i ( A X. A ) ) ) ) |
|
| 51 | 50 | biimpar | |- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. x e. U w = ( x i^i ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
| 52 | 20 21 49 51 | syl21anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
| 53 | elrest | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( v e. ( U |`t ( A X. A ) ) <-> E. u e. U v = ( u i^i ( A X. A ) ) ) ) |
|
| 54 | 53 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 55 | 14 54 | syldanl | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 56 | 55 | ad2antrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 57 | 52 56 | r19.29a | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) /\ v C_ w ) -> w e. ( U |`t ( A X. A ) ) ) |
| 58 | 57 | ex | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ~P ( A X. A ) ) -> ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) ) |
| 59 | 58 | ralrimiva | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) ) |
| 60 | 9 | ad5antr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> U e. ( UnifOn ` X ) ) |
| 61 | 14 | ad5antr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( A X. A ) e. _V ) |
| 62 | simpllr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> u e. U ) |
|
| 63 | simplr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> x e. U ) |
|
| 64 | ustincl | |- ( ( U e. ( UnifOn ` X ) /\ u e. U /\ x e. U ) -> ( u i^i x ) e. U ) |
|
| 65 | 60 62 63 64 | syl3anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( u i^i x ) e. U ) |
| 66 | simprl | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
|
| 67 | simprr | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> w = ( x i^i ( A X. A ) ) ) |
|
| 68 | 66 67 | ineq12d | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) = ( ( u i^i ( A X. A ) ) i^i ( x i^i ( A X. A ) ) ) ) |
| 69 | inindir | |- ( ( u i^i x ) i^i ( A X. A ) ) = ( ( u i^i ( A X. A ) ) i^i ( x i^i ( A X. A ) ) ) |
|
| 70 | 68 69 | eqtr4di | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) = ( ( u i^i x ) i^i ( A X. A ) ) ) |
| 71 | ineq1 | |- ( y = ( u i^i x ) -> ( y i^i ( A X. A ) ) = ( ( u i^i x ) i^i ( A X. A ) ) ) |
|
| 72 | 71 | rspceeqv | |- ( ( ( u i^i x ) e. U /\ ( v i^i w ) = ( ( u i^i x ) i^i ( A X. A ) ) ) -> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) |
| 73 | 65 70 72 | syl2anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) |
| 74 | elrest | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( ( v i^i w ) e. ( U |`t ( A X. A ) ) <-> E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) ) |
|
| 75 | 74 | biimpar | |- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. y e. U ( v i^i w ) = ( y i^i ( A X. A ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 76 | 60 61 73 75 | syl21anc | |- ( ( ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ x e. U ) /\ ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 77 | 55 | adantr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. u e. U v = ( u i^i ( A X. A ) ) ) |
| 78 | 9 | ad2antrr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
| 79 | 14 | ad2antrr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 80 | simpr | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> w e. ( U |`t ( A X. A ) ) ) |
|
| 81 | 50 | biimpa | |- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 82 | 78 79 80 81 | syl21anc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. x e. U w = ( x i^i ( A X. A ) ) ) |
| 83 | reeanv | |- ( E. u e. U E. x e. U ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) <-> ( E. u e. U v = ( u i^i ( A X. A ) ) /\ E. x e. U w = ( x i^i ( A X. A ) ) ) ) |
|
| 84 | 77 82 83 | sylanbrc | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> E. u e. U E. x e. U ( v = ( u i^i ( A X. A ) ) /\ w = ( x i^i ( A X. A ) ) ) ) |
| 85 | 76 84 | r19.29vva | |- ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ w e. ( U |`t ( A X. A ) ) ) -> ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 86 | 85 | ralrimiva | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) ) |
| 87 | simp-4l | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> U e. ( UnifOn ` X ) ) |
|
| 88 | simplr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> u e. U ) |
|
| 89 | ustdiag | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> ( _I |` X ) C_ u ) |
|
| 90 | 87 88 89 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` X ) C_ u ) |
| 91 | simp-4r | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> A C_ X ) |
|
| 92 | inss1 | |- ( ( _I |` X ) i^i ( A X. A ) ) C_ ( _I |` X ) |
|
| 93 | resss | |- ( _I |` X ) C_ _I |
|
| 94 | 92 93 | sstri | |- ( ( _I |` X ) i^i ( A X. A ) ) C_ _I |
| 95 | iss | |- ( ( ( _I |` X ) i^i ( A X. A ) ) C_ _I <-> ( ( _I |` X ) i^i ( A X. A ) ) = ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) ) |
|
| 96 | 94 95 | mpbi | |- ( ( _I |` X ) i^i ( A X. A ) ) = ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 97 | simpr | |- ( ( A C_ X /\ u e. A ) -> u e. A ) |
|
| 98 | ssel2 | |- ( ( A C_ X /\ u e. A ) -> u e. X ) |
|
| 99 | equid | |- u = u |
|
| 100 | resieq | |- ( ( u e. X /\ u e. X ) -> ( u ( _I |` X ) u <-> u = u ) ) |
|
| 101 | 99 100 | mpbiri | |- ( ( u e. X /\ u e. X ) -> u ( _I |` X ) u ) |
| 102 | 98 98 101 | syl2anc | |- ( ( A C_ X /\ u e. A ) -> u ( _I |` X ) u ) |
| 103 | breq2 | |- ( v = u -> ( u ( _I |` X ) v <-> u ( _I |` X ) u ) ) |
|
| 104 | 103 | rspcev | |- ( ( u e. A /\ u ( _I |` X ) u ) -> E. v e. A u ( _I |` X ) v ) |
| 105 | 97 102 104 | syl2anc | |- ( ( A C_ X /\ u e. A ) -> E. v e. A u ( _I |` X ) v ) |
| 106 | 105 | ralrimiva | |- ( A C_ X -> A. u e. A E. v e. A u ( _I |` X ) v ) |
| 107 | dminxp | |- ( dom ( ( _I |` X ) i^i ( A X. A ) ) = A <-> A. u e. A E. v e. A u ( _I |` X ) v ) |
|
| 108 | 106 107 | sylibr | |- ( A C_ X -> dom ( ( _I |` X ) i^i ( A X. A ) ) = A ) |
| 109 | 108 | reseq2d | |- ( A C_ X -> ( _I |` dom ( ( _I |` X ) i^i ( A X. A ) ) ) = ( _I |` A ) ) |
| 110 | 96 109 | eqtr2id | |- ( A C_ X -> ( _I |` A ) = ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 111 | 110 | adantl | |- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( _I |` A ) = ( ( _I |` X ) i^i ( A X. A ) ) ) |
| 112 | ssrin | |- ( ( _I |` X ) C_ u -> ( ( _I |` X ) i^i ( A X. A ) ) C_ ( u i^i ( A X. A ) ) ) |
|
| 113 | 112 | adantr | |- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( ( _I |` X ) i^i ( A X. A ) ) C_ ( u i^i ( A X. A ) ) ) |
| 114 | 111 113 | eqsstrd | |- ( ( ( _I |` X ) C_ u /\ A C_ X ) -> ( _I |` A ) C_ ( u i^i ( A X. A ) ) ) |
| 115 | 90 91 114 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` A ) C_ ( u i^i ( A X. A ) ) ) |
| 116 | simpr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> v = ( u i^i ( A X. A ) ) ) |
|
| 117 | 115 116 | sseqtrrd | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( _I |` A ) C_ v ) |
| 118 | 117 55 | r19.29a | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( _I |` A ) C_ v ) |
| 119 | 14 | ad3antrrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( A X. A ) e. _V ) |
| 120 | ustinvel | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> `' u e. U ) |
|
| 121 | 87 88 120 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' u e. U ) |
| 122 | 116 | cnveqd | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v = `' ( u i^i ( A X. A ) ) ) |
| 123 | cnvin | |- `' ( u i^i ( A X. A ) ) = ( `' u i^i `' ( A X. A ) ) |
|
| 124 | cnvxp | |- `' ( A X. A ) = ( A X. A ) |
|
| 125 | 124 | ineq2i | |- ( `' u i^i `' ( A X. A ) ) = ( `' u i^i ( A X. A ) ) |
| 126 | 123 125 | eqtri | |- `' ( u i^i ( A X. A ) ) = ( `' u i^i ( A X. A ) ) |
| 127 | 122 126 | eqtrdi | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v = ( `' u i^i ( A X. A ) ) ) |
| 128 | ineq1 | |- ( x = `' u -> ( x i^i ( A X. A ) ) = ( `' u i^i ( A X. A ) ) ) |
|
| 129 | 128 | rspceeqv | |- ( ( `' u e. U /\ `' v = ( `' u i^i ( A X. A ) ) ) -> E. x e. U `' v = ( x i^i ( A X. A ) ) ) |
| 130 | 121 127 129 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. x e. U `' v = ( x i^i ( A X. A ) ) ) |
| 131 | elrest | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) -> ( `' v e. ( U |`t ( A X. A ) ) <-> E. x e. U `' v = ( x i^i ( A X. A ) ) ) ) |
|
| 132 | 131 | biimpar | |- ( ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V ) /\ E. x e. U `' v = ( x i^i ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 133 | 87 119 130 132 | syl21anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 134 | 133 55 | r19.29a | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> `' v e. ( U |`t ( A X. A ) ) ) |
| 135 | simp-4l | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> U e. ( UnifOn ` X ) ) |
|
| 136 | 14 | ad3antrrr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( A X. A ) e. _V ) |
| 137 | simplr | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> x e. U ) |
|
| 138 | elrestr | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ x e. U ) -> ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
|
| 139 | 135 136 137 138 | syl3anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 140 | inss1 | |- ( x i^i ( A X. A ) ) C_ x |
|
| 141 | coss1 | |- ( ( x i^i ( A X. A ) ) C_ x -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. ( x i^i ( A X. A ) ) ) ) |
|
| 142 | coss2 | |- ( ( x i^i ( A X. A ) ) C_ x -> ( x o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) ) |
|
| 143 | 141 142 | sstrd | |- ( ( x i^i ( A X. A ) ) C_ x -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) ) |
| 144 | 140 143 | ax-mp | |- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) |
| 145 | sstr | |- ( ( ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( x o. x ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
|
| 146 | 144 145 | mpan | |- ( ( x o. x ) C_ u -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
| 147 | 146 | adantl | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ u ) |
| 148 | inss2 | |- ( x i^i ( A X. A ) ) C_ ( A X. A ) |
|
| 149 | coss1 | |- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( x i^i ( A X. A ) ) ) ) |
|
| 150 | coss2 | |- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( A X. A ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) ) |
|
| 151 | 149 150 | sstrd | |- ( ( x i^i ( A X. A ) ) C_ ( A X. A ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) ) |
| 152 | 148 151 | ax-mp | |- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( ( A X. A ) o. ( A X. A ) ) |
| 153 | xpidtr | |- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |
|
| 154 | 152 153 | sstri | |- ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( A X. A ) |
| 155 | 154 | a1i | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( A X. A ) ) |
| 156 | 147 155 | ssind | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) |
| 157 | id | |- ( w = ( x i^i ( A X. A ) ) -> w = ( x i^i ( A X. A ) ) ) |
|
| 158 | 157 157 | coeq12d | |- ( w = ( x i^i ( A X. A ) ) -> ( w o. w ) = ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) ) |
| 159 | 158 | sseq1d | |- ( w = ( x i^i ( A X. A ) ) -> ( ( w o. w ) C_ ( u i^i ( A X. A ) ) <-> ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) ) |
| 160 | 159 | rspcev | |- ( ( ( x i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) /\ ( ( x i^i ( A X. A ) ) o. ( x i^i ( A X. A ) ) ) C_ ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 161 | 139 156 160 | syl2anc | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) /\ x e. U ) /\ ( x o. x ) C_ u ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 162 | ustexhalf | |- ( ( U e. ( UnifOn ` X ) /\ u e. U ) -> E. x e. U ( x o. x ) C_ u ) |
|
| 163 | 162 | adantlr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) -> E. x e. U ( x o. x ) C_ u ) |
| 164 | 161 163 | r19.29a | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ u e. U ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 165 | 164 | ad4ant13 | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) |
| 166 | 116 | sseq2d | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( ( w o. w ) C_ v <-> ( w o. w ) C_ ( u i^i ( A X. A ) ) ) ) |
| 167 | 166 | rexbidv | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> ( E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v <-> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ ( u i^i ( A X. A ) ) ) ) |
| 168 | 165 167 | mpbird | |- ( ( ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) /\ u e. U ) /\ v = ( u i^i ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) |
| 169 | 168 55 | r19.29a | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) |
| 170 | 118 134 169 | 3jca | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) |
| 171 | 59 86 170 | 3jca | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X ) /\ v e. ( U |`t ( A X. A ) ) ) -> ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) |
| 172 | 171 | ralrimiva | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) |
| 173 | 2 19 172 | 3jca | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) |
| 174 | isust | |- ( A e. _V -> ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) <-> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) ) |
|
| 175 | 13 174 | syl | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) <-> ( ( U |`t ( A X. A ) ) C_ ~P ( A X. A ) /\ ( A X. A ) e. ( U |`t ( A X. A ) ) /\ A. v e. ( U |`t ( A X. A ) ) ( A. w e. ~P ( A X. A ) ( v C_ w -> w e. ( U |`t ( A X. A ) ) ) /\ A. w e. ( U |`t ( A X. A ) ) ( v i^i w ) e. ( U |`t ( A X. A ) ) /\ ( ( _I |` A ) C_ v /\ `' v e. ( U |`t ( A X. A ) ) /\ E. w e. ( U |`t ( A X. A ) ) ( w o. w ) C_ v ) ) ) ) ) |
| 176 | 173 175 | mpbird | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |