This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dminxp | |- ( dom ( C i^i ( A X. B ) ) = A <-> A. x e. A E. y e. B x C y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdm4 | |- dom ( C i^i ( A X. B ) ) = ran `' ( C i^i ( A X. B ) ) |
|
| 2 | cnvin | |- `' ( C i^i ( A X. B ) ) = ( `' C i^i `' ( A X. B ) ) |
|
| 3 | cnvxp | |- `' ( A X. B ) = ( B X. A ) |
|
| 4 | 3 | ineq2i | |- ( `' C i^i `' ( A X. B ) ) = ( `' C i^i ( B X. A ) ) |
| 5 | 2 4 | eqtri | |- `' ( C i^i ( A X. B ) ) = ( `' C i^i ( B X. A ) ) |
| 6 | 5 | rneqi | |- ran `' ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) |
| 7 | 1 6 | eqtri | |- dom ( C i^i ( A X. B ) ) = ran ( `' C i^i ( B X. A ) ) |
| 8 | 7 | eqeq1i | |- ( dom ( C i^i ( A X. B ) ) = A <-> ran ( `' C i^i ( B X. A ) ) = A ) |
| 9 | rninxp | |- ( ran ( `' C i^i ( B X. A ) ) = A <-> A. x e. A E. y e. B y `' C x ) |
|
| 10 | vex | |- y e. _V |
|
| 11 | vex | |- x e. _V |
|
| 12 | 10 11 | brcnv | |- ( y `' C x <-> x C y ) |
| 13 | 12 | rexbii | |- ( E. y e. B y `' C x <-> E. y e. B x C y ) |
| 14 | 13 | ralbii | |- ( A. x e. A E. y e. B y `' C x <-> A. x e. A E. y e. B x C y ) |
| 15 | 8 9 14 | 3bitri | |- ( dom ( C i^i ( A X. B ) ) = A <-> A. x e. A E. y e. B x C y ) |