This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resieq | |- ( ( B e. A /\ C e. A ) -> ( B ( _I |` A ) C <-> B = C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | |- ( x = C -> ( B ( _I |` A ) x <-> B ( _I |` A ) C ) ) |
|
| 2 | eqeq2 | |- ( x = C -> ( B = x <-> B = C ) ) |
|
| 3 | 1 2 | bibi12d | |- ( x = C -> ( ( B ( _I |` A ) x <-> B = x ) <-> ( B ( _I |` A ) C <-> B = C ) ) ) |
| 4 | 3 | imbi2d | |- ( x = C -> ( ( B e. A -> ( B ( _I |` A ) x <-> B = x ) ) <-> ( B e. A -> ( B ( _I |` A ) C <-> B = C ) ) ) ) |
| 5 | vex | |- x e. _V |
|
| 6 | 5 | opres | |- ( B e. A -> ( <. B , x >. e. ( _I |` A ) <-> <. B , x >. e. _I ) ) |
| 7 | df-br | |- ( B ( _I |` A ) x <-> <. B , x >. e. ( _I |` A ) ) |
|
| 8 | 5 | ideq | |- ( B _I x <-> B = x ) |
| 9 | df-br | |- ( B _I x <-> <. B , x >. e. _I ) |
|
| 10 | 8 9 | bitr3i | |- ( B = x <-> <. B , x >. e. _I ) |
| 11 | 6 7 10 | 3bitr4g | |- ( B e. A -> ( B ( _I |` A ) x <-> B = x ) ) |
| 12 | 4 11 | vtoclg | |- ( C e. A -> ( B e. A -> ( B ( _I |` A ) C <-> B = C ) ) ) |
| 13 | 12 | impcom | |- ( ( B e. A /\ C e. A ) -> ( B ( _I |` A ) C <-> B = C ) ) |