This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsspw | |- ( J |`t A ) C_ ~P A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | |- ( x e. ( J |`t A ) -> -. ( J |`t A ) = (/) ) |
|
| 2 | restfn | |- |`t Fn ( _V X. _V ) |
|
| 3 | fndm | |- ( |`t Fn ( _V X. _V ) -> dom |`t = ( _V X. _V ) ) |
|
| 4 | 2 3 | ax-mp | |- dom |`t = ( _V X. _V ) |
| 5 | 4 | ndmov | |- ( -. ( J e. _V /\ A e. _V ) -> ( J |`t A ) = (/) ) |
| 6 | 1 5 | nsyl2 | |- ( x e. ( J |`t A ) -> ( J e. _V /\ A e. _V ) ) |
| 7 | elrest | |- ( ( J e. _V /\ A e. _V ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
|
| 8 | 6 7 | syl | |- ( x e. ( J |`t A ) -> ( x e. ( J |`t A ) <-> E. y e. J x = ( y i^i A ) ) ) |
| 9 | 8 | ibi | |- ( x e. ( J |`t A ) -> E. y e. J x = ( y i^i A ) ) |
| 10 | inss2 | |- ( y i^i A ) C_ A |
|
| 11 | sseq1 | |- ( x = ( y i^i A ) -> ( x C_ A <-> ( y i^i A ) C_ A ) ) |
|
| 12 | 10 11 | mpbiri | |- ( x = ( y i^i A ) -> x C_ A ) |
| 13 | 12 | rexlimivw | |- ( E. y e. J x = ( y i^i A ) -> x C_ A ) |
| 14 | 9 13 | syl | |- ( x e. ( J |`t A ) -> x C_ A ) |
| 15 | velpw | |- ( x e. ~P A <-> x C_ A ) |
|
| 16 | 14 15 | sylibr | |- ( x e. ( J |`t A ) -> x e. ~P A ) |
| 17 | 16 | ssriv | |- ( J |`t A ) C_ ~P A |