This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The full set is always an entourage. Condition F_IIb of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustbasel | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | |- ( U e. ( UnifOn ` X ) -> X e. _V ) |
|
| 2 | isust | |- ( X e. _V -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
|
| 3 | 1 2 | syl | |- ( U e. ( UnifOn ` X ) -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 4 | 3 | ibi | |- ( U e. ( UnifOn ` X ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 5 | 4 | simp2d | |- ( U e. ( UnifOn ` X ) -> ( X X. X ) e. U ) |