This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpidtr | |- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brxp | |- ( x ( A X. A ) y <-> ( x e. A /\ y e. A ) ) |
|
| 2 | brxp | |- ( y ( A X. A ) z <-> ( y e. A /\ z e. A ) ) |
|
| 3 | brxp | |- ( x ( A X. A ) z <-> ( x e. A /\ z e. A ) ) |
|
| 4 | 3 | simplbi2com | |- ( z e. A -> ( x e. A -> x ( A X. A ) z ) ) |
| 5 | 2 4 | simplbiim | |- ( y ( A X. A ) z -> ( x e. A -> x ( A X. A ) z ) ) |
| 6 | 5 | com12 | |- ( x e. A -> ( y ( A X. A ) z -> x ( A X. A ) z ) ) |
| 7 | 6 | adantr | |- ( ( x e. A /\ y e. A ) -> ( y ( A X. A ) z -> x ( A X. A ) z ) ) |
| 8 | 1 7 | sylbi | |- ( x ( A X. A ) y -> ( y ( A X. A ) z -> x ( A X. A ) z ) ) |
| 9 | 8 | imp | |- ( ( x ( A X. A ) y /\ y ( A X. A ) z ) -> x ( A X. A ) z ) |
| 10 | 9 | ax-gen | |- A. z ( ( x ( A X. A ) y /\ y ( A X. A ) z ) -> x ( A X. A ) z ) |
| 11 | 10 | gen2 | |- A. x A. y A. z ( ( x ( A X. A ) y /\ y ( A X. A ) z ) -> x ( A X. A ) z ) |
| 12 | cotr | |- ( ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) <-> A. x A. y A. z ( ( x ( A X. A ) y /\ y ( A X. A ) z ) -> x ( A X. A ) z ) ) |
|
| 13 | 11 12 | mpbir | |- ( ( A X. A ) o. ( A X. A ) ) C_ ( A X. A ) |