This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for composition. (Contributed by NM, 5-Apr-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss2 | |- ( A C_ B -> ( C o. A ) C_ ( C o. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | |- ( A C_ B -> ( x A y -> x B y ) ) |
|
| 2 | 1 | anim1d | |- ( A C_ B -> ( ( x A y /\ y C z ) -> ( x B y /\ y C z ) ) ) |
| 3 | 2 | eximdv | |- ( A C_ B -> ( E. y ( x A y /\ y C z ) -> E. y ( x B y /\ y C z ) ) ) |
| 4 | 3 | ssopab2dv | |- ( A C_ B -> { <. x , z >. | E. y ( x A y /\ y C z ) } C_ { <. x , z >. | E. y ( x B y /\ y C z ) } ) |
| 5 | df-co | |- ( C o. A ) = { <. x , z >. | E. y ( x A y /\ y C z ) } |
|
| 6 | df-co | |- ( C o. B ) = { <. x , z >. | E. y ( x B y /\ y C z ) } |
|
| 7 | 4 5 6 | 3sstr4g | |- ( A C_ B -> ( C o. A ) C_ ( C o. B ) ) |