This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subclass theorem for composition. (Contributed by FL, 30-Dec-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | coss1 | |- ( A C_ B -> ( A o. C ) C_ ( B o. C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr | |- ( A C_ B -> ( y A z -> y B z ) ) |
|
| 2 | 1 | anim2d | |- ( A C_ B -> ( ( x C y /\ y A z ) -> ( x C y /\ y B z ) ) ) |
| 3 | 2 | eximdv | |- ( A C_ B -> ( E. y ( x C y /\ y A z ) -> E. y ( x C y /\ y B z ) ) ) |
| 4 | 3 | ssopab2dv | |- ( A C_ B -> { <. x , z >. | E. y ( x C y /\ y A z ) } C_ { <. x , z >. | E. y ( x C y /\ y B z ) } ) |
| 5 | df-co | |- ( A o. C ) = { <. x , z >. | E. y ( x C y /\ y A z ) } |
|
| 6 | df-co | |- ( B o. C ) = { <. x , z >. | E. y ( x C y /\ y B z ) } |
|
| 7 | 4 5 6 | 3sstr4g | |- ( A C_ B -> ( A o. C ) C_ ( B o. C ) ) |