This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009) (Revised by Mario Carneiro, 15-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elrest | |- ( ( J e. V /\ B e. W ) -> ( A e. ( J |`t B ) <-> E. x e. J A = ( x i^i B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restval | |- ( ( J e. V /\ B e. W ) -> ( J |`t B ) = ran ( x e. J |-> ( x i^i B ) ) ) |
|
| 2 | 1 | eleq2d | |- ( ( J e. V /\ B e. W ) -> ( A e. ( J |`t B ) <-> A e. ran ( x e. J |-> ( x i^i B ) ) ) ) |
| 3 | eqid | |- ( x e. J |-> ( x i^i B ) ) = ( x e. J |-> ( x i^i B ) ) |
|
| 4 | vex | |- x e. _V |
|
| 5 | 4 | inex1 | |- ( x i^i B ) e. _V |
| 6 | 3 5 | elrnmpti | |- ( A e. ran ( x e. J |-> ( x i^i B ) ) <-> E. x e. J A = ( x i^i B ) ) |
| 7 | 2 6 | bitrdi | |- ( ( J e. V /\ B e. W ) -> ( A e. ( J |`t B ) <-> E. x e. J A = ( x i^i B ) ) ) |