This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A uniform structure is upward closed. Condition F_I of BourbakiTop1 p. I.36. (Contributed by Thierry Arnoux, 19-Nov-2017) (Proof shortened by AV, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ustssel | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( V C_ W -> W e. U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> U e. ( UnifOn ` X ) ) |
|
| 2 | 1 | elfvexd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> X e. _V ) |
| 3 | isust | |- ( X e. _V -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
|
| 4 | 2 3 | syl | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( U e. ( UnifOn ` X ) <-> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) ) |
| 5 | 1 4 | mpbid | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( U C_ ~P ( X X. X ) /\ ( X X. X ) e. U /\ A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) ) |
| 6 | 5 | simp3d | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) ) |
| 7 | simp1 | |- ( ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) -> A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) ) |
|
| 8 | 7 | ralimi | |- ( A. v e. U ( A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) /\ A. w e. U ( v i^i w ) e. U /\ ( ( _I |` X ) C_ v /\ `' v e. U /\ E. w e. U ( w o. w ) C_ v ) ) -> A. v e. U A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) ) |
| 9 | 6 8 | syl | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> A. v e. U A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) ) |
| 10 | simp2 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> V e. U ) |
|
| 11 | 2 2 | xpexd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( X X. X ) e. _V ) |
| 12 | simp3 | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> W C_ ( X X. X ) ) |
|
| 13 | 11 12 | sselpwd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> W e. ~P ( X X. X ) ) |
| 14 | sseq1 | |- ( v = V -> ( v C_ w <-> V C_ w ) ) |
|
| 15 | 14 | imbi1d | |- ( v = V -> ( ( v C_ w -> w e. U ) <-> ( V C_ w -> w e. U ) ) ) |
| 16 | sseq2 | |- ( w = W -> ( V C_ w <-> V C_ W ) ) |
|
| 17 | eleq1 | |- ( w = W -> ( w e. U <-> W e. U ) ) |
|
| 18 | 16 17 | imbi12d | |- ( w = W -> ( ( V C_ w -> w e. U ) <-> ( V C_ W -> W e. U ) ) ) |
| 19 | 15 18 | rspc2v | |- ( ( V e. U /\ W e. ~P ( X X. X ) ) -> ( A. v e. U A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) -> ( V C_ W -> W e. U ) ) ) |
| 20 | 10 13 19 | syl2anc | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( A. v e. U A. w e. ~P ( X X. X ) ( v C_ w -> w e. U ) -> ( V C_ W -> W e. U ) ) ) |
| 21 | 9 20 | mpd | |- ( ( U e. ( UnifOn ` X ) /\ V e. U /\ W C_ ( X X. X ) ) -> ( V C_ W -> W e. U ) ) |