This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative inverse in a division ring is nonzero. ( recne0 analog). (Contributed by NM, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | drnginvrcl.b | |- B = ( Base ` R ) |
|
| drnginvrcl.z | |- .0. = ( 0g ` R ) |
||
| drnginvrcl.i | |- I = ( invr ` R ) |
||
| Assertion | drnginvrn0 | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drnginvrcl.b | |- B = ( Base ` R ) |
|
| 2 | drnginvrcl.z | |- .0. = ( 0g ` R ) |
|
| 3 | drnginvrcl.i | |- I = ( invr ` R ) |
|
| 4 | drngring | |- ( R e. DivRing -> R e. Ring ) |
|
| 5 | eqid | |- ( Unit ` R ) = ( Unit ` R ) |
|
| 6 | 5 3 | unitinvcl | |- ( ( R e. Ring /\ X e. ( Unit ` R ) ) -> ( I ` X ) e. ( Unit ` R ) ) |
| 7 | 6 | ex | |- ( R e. Ring -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
| 8 | 4 7 | syl | |- ( R e. DivRing -> ( X e. ( Unit ` R ) -> ( I ` X ) e. ( Unit ` R ) ) ) |
| 9 | 1 5 2 | drngunit | |- ( R e. DivRing -> ( X e. ( Unit ` R ) <-> ( X e. B /\ X =/= .0. ) ) ) |
| 10 | 1 5 2 | drngunit | |- ( R e. DivRing -> ( ( I ` X ) e. ( Unit ` R ) <-> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
| 11 | 8 9 10 | 3imtr3d | |- ( R e. DivRing -> ( ( X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) ) |
| 12 | 11 | 3impib | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( ( I ` X ) e. B /\ ( I ` X ) =/= .0. ) ) |
| 13 | 12 | simprd | |- ( ( R e. DivRing /\ X e. B /\ X =/= .0. ) -> ( I ` X ) =/= .0. ) |