This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero scalar product does not change the span of a singleton. ( spansncol analog.) (Contributed by NM, 23-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnvs.v | |- V = ( Base ` W ) |
|
| lspsnvs.f | |- F = ( Scalar ` W ) |
||
| lspsnvs.t | |- .x. = ( .s ` W ) |
||
| lspsnvs.k | |- K = ( Base ` F ) |
||
| lspsnvs.o | |- .0. = ( 0g ` F ) |
||
| lspsnvs.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnvs | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( R .x. X ) } ) = ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnvs.v | |- V = ( Base ` W ) |
|
| 2 | lspsnvs.f | |- F = ( Scalar ` W ) |
|
| 3 | lspsnvs.t | |- .x. = ( .s ` W ) |
|
| 4 | lspsnvs.k | |- K = ( Base ` F ) |
|
| 5 | lspsnvs.o | |- .0. = ( 0g ` F ) |
|
| 6 | lspsnvs.n | |- N = ( LSpan ` W ) |
|
| 7 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> W e. LMod ) |
| 9 | simp2l | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> R e. K ) |
|
| 10 | simp3 | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> X e. V ) |
|
| 11 | 2 4 1 3 6 | lspsnvsi | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |
| 12 | 8 9 10 11 | syl3anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( R .x. X ) } ) C_ ( N ` { X } ) ) |
| 13 | 2 | lvecdrng | |- ( W e. LVec -> F e. DivRing ) |
| 14 | 13 | 3ad2ant1 | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> F e. DivRing ) |
| 15 | simp2r | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> R =/= .0. ) |
|
| 16 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 17 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 18 | eqid | |- ( invr ` F ) = ( invr ` F ) |
|
| 19 | 4 5 16 17 18 | drnginvrl | |- ( ( F e. DivRing /\ R e. K /\ R =/= .0. ) -> ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) = ( 1r ` F ) ) |
| 20 | 14 9 15 19 | syl3anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) = ( 1r ` F ) ) |
| 21 | 20 | oveq1d | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( 1r ` F ) .x. X ) ) |
| 22 | 4 5 18 | drnginvrcl | |- ( ( F e. DivRing /\ R e. K /\ R =/= .0. ) -> ( ( invr ` F ) ` R ) e. K ) |
| 23 | 14 9 15 22 | syl3anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( invr ` F ) ` R ) e. K ) |
| 24 | 1 2 3 4 16 | lmodvsass | |- ( ( W e. LMod /\ ( ( ( invr ` F ) ` R ) e. K /\ R e. K /\ X e. V ) ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) ) |
| 25 | 8 23 9 10 24 | syl13anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( ( invr ` F ) ` R ) ( .r ` F ) R ) .x. X ) = ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) ) |
| 26 | 1 2 3 17 | lmodvs1 | |- ( ( W e. LMod /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 27 | 8 10 26 | syl2anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( 1r ` F ) .x. X ) = X ) |
| 28 | 21 25 27 | 3eqtr3d | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) = X ) |
| 29 | 28 | sneqd | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } = { X } ) |
| 30 | 29 | fveq2d | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) = ( N ` { X } ) ) |
| 31 | 1 2 3 4 | lmodvscl | |- ( ( W e. LMod /\ R e. K /\ X e. V ) -> ( R .x. X ) e. V ) |
| 32 | 8 9 10 31 | syl3anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( R .x. X ) e. V ) |
| 33 | 2 4 1 3 6 | lspsnvsi | |- ( ( W e. LMod /\ ( ( invr ` F ) ` R ) e. K /\ ( R .x. X ) e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 34 | 8 23 32 33 | syl3anc | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( ( ( invr ` F ) ` R ) .x. ( R .x. X ) ) } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 35 | 30 34 | eqsstrrd | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { X } ) C_ ( N ` { ( R .x. X ) } ) ) |
| 36 | 12 35 | eqssd | |- ( ( W e. LVec /\ ( R e. K /\ R =/= .0. ) /\ X e. V ) -> ( N ` { ( R .x. X ) } ) = ( N ` { X } ) ) |