This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for scalar product (left-distributivity). ( ax-hvdistr1 analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsdi.v | |- V = ( Base ` W ) |
|
| lmodvsdi.a | |- .+ = ( +g ` W ) |
||
| lmodvsdi.f | |- F = ( Scalar ` W ) |
||
| lmodvsdi.s | |- .x. = ( .s ` W ) |
||
| lmodvsdi.k | |- K = ( Base ` F ) |
||
| Assertion | lmodvsdi | |- ( ( W e. LMod /\ ( R e. K /\ X e. V /\ Y e. V ) ) -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsdi.v | |- V = ( Base ` W ) |
|
| 2 | lmodvsdi.a | |- .+ = ( +g ` W ) |
|
| 3 | lmodvsdi.f | |- F = ( Scalar ` W ) |
|
| 4 | lmodvsdi.s | |- .x. = ( .s ` W ) |
|
| 5 | lmodvsdi.k | |- K = ( Base ` F ) |
|
| 6 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 7 | eqid | |- ( .r ` F ) = ( .r ` F ) |
|
| 8 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 9 | 1 2 4 3 5 6 7 8 | lmodlema | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( Y e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) .+ ( R .x. X ) ) ) /\ ( ( ( R ( .r ` F ) R ) .x. X ) = ( R .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X ) ) ) |
| 10 | 9 | simpld | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( Y e. V /\ X e. V ) ) -> ( ( R .x. X ) e. V /\ ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) /\ ( ( R ( +g ` F ) R ) .x. X ) = ( ( R .x. X ) .+ ( R .x. X ) ) ) ) |
| 11 | 10 | simp2d | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) /\ ( Y e. V /\ X e. V ) ) -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) |
| 12 | 11 | 3expia | |- ( ( W e. LMod /\ ( R e. K /\ R e. K ) ) -> ( ( Y e. V /\ X e. V ) -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) ) |
| 13 | 12 | anabsan2 | |- ( ( W e. LMod /\ R e. K ) -> ( ( Y e. V /\ X e. V ) -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) ) |
| 14 | 13 | exp4b | |- ( W e. LMod -> ( R e. K -> ( Y e. V -> ( X e. V -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) ) ) ) |
| 15 | 14 | com34 | |- ( W e. LMod -> ( R e. K -> ( X e. V -> ( Y e. V -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) ) ) ) |
| 16 | 15 | 3imp2 | |- ( ( W e. LMod /\ ( R e. K /\ X e. V /\ Y e. V ) ) -> ( R .x. ( X .+ Y ) ) = ( ( R .x. X ) .+ ( R .x. Y ) ) ) |