This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A vector belongs to the span of its singleton. ( spansnid analog.) (Contributed by NM, 9-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsnid.v | |- V = ( Base ` W ) |
|
| lspsnid.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsnid.v | |- V = ( Base ` W ) |
|
| 2 | lspsnid.n | |- N = ( LSpan ` W ) |
|
| 3 | snssi | |- ( X e. V -> { X } C_ V ) |
|
| 4 | 1 2 | lspssid | |- ( ( W e. LMod /\ { X } C_ V ) -> { X } C_ ( N ` { X } ) ) |
| 5 | 3 4 | sylan2 | |- ( ( W e. LMod /\ X e. V ) -> { X } C_ ( N ` { X } ) ) |
| 6 | snssg | |- ( X e. V -> ( X e. ( N ` { X } ) <-> { X } C_ ( N ` { X } ) ) ) |
|
| 7 | 6 | adantl | |- ( ( W e. LMod /\ X e. V ) -> ( X e. ( N ` { X } ) <-> { X } C_ ( N ` { X } ) ) ) |
| 8 | 5 7 | mpbird | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |