This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for scalar product. ( ax-hvmulass analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodvsass.v | |- V = ( Base ` W ) |
|
| lmodvsass.f | |- F = ( Scalar ` W ) |
||
| lmodvsass.s | |- .x. = ( .s ` W ) |
||
| lmodvsass.k | |- K = ( Base ` F ) |
||
| lmodvsass.t | |- .X. = ( .r ` F ) |
||
| Assertion | lmodvsass | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodvsass.v | |- V = ( Base ` W ) |
|
| 2 | lmodvsass.f | |- F = ( Scalar ` W ) |
|
| 3 | lmodvsass.s | |- .x. = ( .s ` W ) |
|
| 4 | lmodvsass.k | |- K = ( Base ` F ) |
|
| 5 | lmodvsass.t | |- .X. = ( .r ` F ) |
|
| 6 | eqid | |- ( +g ` W ) = ( +g ` W ) |
|
| 7 | eqid | |- ( +g ` F ) = ( +g ` F ) |
|
| 8 | eqid | |- ( 1r ` F ) = ( 1r ` F ) |
|
| 9 | 1 6 3 2 4 7 5 8 | lmodlema | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( R .x. X ) e. V /\ ( R .x. ( X ( +g ` W ) X ) ) = ( ( R .x. X ) ( +g ` W ) ( R .x. X ) ) /\ ( ( Q ( +g ` F ) R ) .x. X ) = ( ( Q .x. X ) ( +g ` W ) ( R .x. X ) ) ) /\ ( ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) /\ ( ( 1r ` F ) .x. X ) = X ) ) ) |
| 10 | 9 | simprld | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 11 | 10 | 3expa | |- ( ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 12 | 11 | anabsan2 | |- ( ( ( W e. LMod /\ ( Q e. K /\ R e. K ) ) /\ X e. V ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |
| 13 | 12 | exp42 | |- ( W e. LMod -> ( Q e. K -> ( R e. K -> ( X e. V -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) ) ) ) |
| 14 | 13 | 3imp2 | |- ( ( W e. LMod /\ ( Q e. K /\ R e. K /\ X e. V ) ) -> ( ( Q .X. R ) .x. X ) = ( Q .x. ( R .x. X ) ) ) |