This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsppr0.v | |- V = ( Base ` W ) |
|
| lsppr0.z | |- .0. = ( 0g ` W ) |
||
| lsppr0.n | |- N = ( LSpan ` W ) |
||
| lsppr0.w | |- ( ph -> W e. LMod ) |
||
| lsppr0.x | |- ( ph -> X e. V ) |
||
| Assertion | lsppr0 | |- ( ph -> ( N ` { X , .0. } ) = ( N ` { X } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsppr0.v | |- V = ( Base ` W ) |
|
| 2 | lsppr0.z | |- .0. = ( 0g ` W ) |
|
| 3 | lsppr0.n | |- N = ( LSpan ` W ) |
|
| 4 | lsppr0.w | |- ( ph -> W e. LMod ) |
|
| 5 | lsppr0.x | |- ( ph -> X e. V ) |
|
| 6 | eqid | |- ( LSSum ` W ) = ( LSSum ` W ) |
|
| 7 | 1 2 | lmod0vcl | |- ( W e. LMod -> .0. e. V ) |
| 8 | 4 7 | syl | |- ( ph -> .0. e. V ) |
| 9 | 1 3 6 4 5 8 | lsmpr | |- ( ph -> ( N ` { X , .0. } ) = ( ( N ` { X } ) ( LSSum ` W ) ( N ` { .0. } ) ) ) |
| 10 | 2 3 | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 11 | 4 10 | syl | |- ( ph -> ( N ` { .0. } ) = { .0. } ) |
| 12 | 11 | oveq2d | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) ( N ` { .0. } ) ) = ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) ) |
| 13 | 1 3 | lspsnsubg | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 14 | 4 5 13 | syl2anc | |- ( ph -> ( N ` { X } ) e. ( SubGrp ` W ) ) |
| 15 | 2 6 | lsm01 | |- ( ( N ` { X } ) e. ( SubGrp ` W ) -> ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) = ( N ` { X } ) ) |
| 16 | 14 15 | syl | |- ( ph -> ( ( N ` { X } ) ( LSSum ` W ) { .0. } ) = ( N ` { X } ) ) |
| 17 | 9 12 16 | 3eqtrd | |- ( ph -> ( N ` { X , .0. } ) = ( N ` { X } ) ) |