This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bézout's identity: For any integers A and B , there are integers x , y such that ( A gcd B ) = A x. x + B x. y . This is Metamath 100 proof #60. (Contributed by Mario Carneiro, 22-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bezout | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 | |- ( z = t -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> t = ( ( A x. x ) + ( B x. y ) ) ) ) |
|
| 2 | 1 | 2rexbidv | |- ( z = t -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ t = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 3 | oveq2 | |- ( x = u -> ( A x. x ) = ( A x. u ) ) |
|
| 4 | 3 | oveq1d | |- ( x = u -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. y ) ) ) |
| 5 | 4 | eqeq2d | |- ( x = u -> ( t = ( ( A x. x ) + ( B x. y ) ) <-> t = ( ( A x. u ) + ( B x. y ) ) ) ) |
| 6 | oveq2 | |- ( y = v -> ( B x. y ) = ( B x. v ) ) |
|
| 7 | 6 | oveq2d | |- ( y = v -> ( ( A x. u ) + ( B x. y ) ) = ( ( A x. u ) + ( B x. v ) ) ) |
| 8 | 7 | eqeq2d | |- ( y = v -> ( t = ( ( A x. u ) + ( B x. y ) ) <-> t = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 9 | 5 8 | cbvrex2vw | |- ( E. x e. ZZ E. y e. ZZ t = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) ) |
| 10 | 2 9 | bitrdi | |- ( z = t -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) ) ) |
| 11 | 10 | cbvrabv | |- { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } = { t e. NN | E. u e. ZZ E. v e. ZZ t = ( ( A x. u ) + ( B x. v ) ) } |
| 12 | simpll | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> A e. ZZ ) |
|
| 13 | simplr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> B e. ZZ ) |
|
| 14 | eqid | |- inf ( { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } , RR , < ) = inf ( { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } , RR , < ) |
|
| 15 | simpr | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> -. ( A = 0 /\ B = 0 ) ) |
|
| 16 | 11 12 13 14 15 | bezoutlem4 | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } ) |
| 17 | eqeq1 | |- ( z = ( A gcd B ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
|
| 18 | 17 | 2rexbidv | |- ( z = ( A gcd B ) -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 19 | 18 | elrab | |- ( ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } <-> ( ( A gcd B ) e. NN /\ E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 20 | 19 | simprbi | |- ( ( A gcd B ) e. { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 21 | 16 20 | syl | |- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 /\ B = 0 ) ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 22 | 21 | ex | |- ( ( A e. ZZ /\ B e. ZZ ) -> ( -. ( A = 0 /\ B = 0 ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 23 | 0z | |- 0 e. ZZ |
|
| 24 | 00id | |- ( 0 + 0 ) = 0 |
|
| 25 | 0cn | |- 0 e. CC |
|
| 26 | 25 | mul01i | |- ( 0 x. 0 ) = 0 |
| 27 | 26 26 | oveq12i | |- ( ( 0 x. 0 ) + ( 0 x. 0 ) ) = ( 0 + 0 ) |
| 28 | gcd0val | |- ( 0 gcd 0 ) = 0 |
|
| 29 | 24 27 28 | 3eqtr4ri | |- ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) |
| 30 | oveq2 | |- ( x = 0 -> ( 0 x. x ) = ( 0 x. 0 ) ) |
|
| 31 | 30 | oveq1d | |- ( x = 0 -> ( ( 0 x. x ) + ( 0 x. y ) ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) ) |
| 32 | 31 | eqeq2d | |- ( x = 0 -> ( ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) ) ) |
| 33 | oveq2 | |- ( y = 0 -> ( 0 x. y ) = ( 0 x. 0 ) ) |
|
| 34 | 33 | oveq2d | |- ( y = 0 -> ( ( 0 x. 0 ) + ( 0 x. y ) ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) |
| 35 | 34 | eqeq2d | |- ( y = 0 -> ( ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) ) |
| 36 | 32 35 | rspc2ev | |- ( ( 0 e. ZZ /\ 0 e. ZZ /\ ( 0 gcd 0 ) = ( ( 0 x. 0 ) + ( 0 x. 0 ) ) ) -> E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) |
| 37 | 23 23 29 36 | mp3an | |- E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) |
| 38 | oveq12 | |- ( ( A = 0 /\ B = 0 ) -> ( A gcd B ) = ( 0 gcd 0 ) ) |
|
| 39 | oveq1 | |- ( A = 0 -> ( A x. x ) = ( 0 x. x ) ) |
|
| 40 | oveq1 | |- ( B = 0 -> ( B x. y ) = ( 0 x. y ) ) |
|
| 41 | 39 40 | oveqan12d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A x. x ) + ( B x. y ) ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) |
| 42 | 38 41 | eqeq12d | |- ( ( A = 0 /\ B = 0 ) -> ( ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) <-> ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) ) |
| 43 | 42 | 2rexbidv | |- ( ( A = 0 /\ B = 0 ) -> ( E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( 0 gcd 0 ) = ( ( 0 x. x ) + ( 0 x. y ) ) ) ) |
| 44 | 37 43 | mpbiri | |- ( ( A = 0 /\ B = 0 ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 45 | 22 44 | pm2.61d2 | |- ( ( A e. ZZ /\ B e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( A gcd B ) = ( ( A x. x ) + ( B x. y ) ) ) |