This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lcm of two integers divides any integer the two divide. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmdvds | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( 0 || K -> 0 || K ) |
|
| 2 | breq1 | |- ( M = 0 -> ( M || K <-> 0 || K ) ) |
|
| 3 | 2 | adantl | |- ( ( N e. ZZ /\ M = 0 ) -> ( M || K <-> 0 || K ) ) |
| 4 | oveq1 | |- ( M = 0 -> ( M lcm N ) = ( 0 lcm N ) ) |
|
| 5 | 0z | |- 0 e. ZZ |
|
| 6 | lcmcom | |- ( ( 0 e. ZZ /\ N e. ZZ ) -> ( 0 lcm N ) = ( N lcm 0 ) ) |
|
| 7 | 5 6 | mpan | |- ( N e. ZZ -> ( 0 lcm N ) = ( N lcm 0 ) ) |
| 8 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
|
| 9 | 7 8 | eqtrd | |- ( N e. ZZ -> ( 0 lcm N ) = 0 ) |
| 10 | 4 9 | sylan9eqr | |- ( ( N e. ZZ /\ M = 0 ) -> ( M lcm N ) = 0 ) |
| 11 | 10 | breq1d | |- ( ( N e. ZZ /\ M = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) ) |
| 12 | 3 11 | imbi12d | |- ( ( N e. ZZ /\ M = 0 ) -> ( ( M || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) ) |
| 13 | 1 12 | mpbiri | |- ( ( N e. ZZ /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) ) |
| 14 | 13 | 3ad2antl3 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M || K -> ( M lcm N ) || K ) ) |
| 15 | 14 | adantrd | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 16 | 15 | ex | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 17 | breq1 | |- ( N = 0 -> ( N || K <-> 0 || K ) ) |
|
| 18 | 17 | adantl | |- ( ( M e. ZZ /\ N = 0 ) -> ( N || K <-> 0 || K ) ) |
| 19 | oveq2 | |- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
|
| 20 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
|
| 21 | 19 20 | sylan9eqr | |- ( ( M e. ZZ /\ N = 0 ) -> ( M lcm N ) = 0 ) |
| 22 | 21 | breq1d | |- ( ( M e. ZZ /\ N = 0 ) -> ( ( M lcm N ) || K <-> 0 || K ) ) |
| 23 | 18 22 | imbi12d | |- ( ( M e. ZZ /\ N = 0 ) -> ( ( N || K -> ( M lcm N ) || K ) <-> ( 0 || K -> 0 || K ) ) ) |
| 24 | 1 23 | mpbiri | |- ( ( M e. ZZ /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) ) |
| 25 | 24 | 3ad2antl2 | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( N || K -> ( M lcm N ) || K ) ) |
| 26 | 25 | adantld | |- ( ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 27 | 26 | ex | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( N = 0 -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 28 | neanior | |- ( ( M =/= 0 /\ N =/= 0 ) <-> -. ( M = 0 \/ N = 0 ) ) |
|
| 29 | lcmcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
|
| 30 | 29 | nn0zd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) |
| 31 | dvds0 | |- ( ( M lcm N ) e. ZZ -> ( M lcm N ) || 0 ) |
|
| 32 | 30 31 | syl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) || 0 ) |
| 33 | 32 | a1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) |
| 34 | 33 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) |
| 35 | breq2 | |- ( K = 0 -> ( M || K <-> M || 0 ) ) |
|
| 36 | breq2 | |- ( K = 0 -> ( N || K <-> N || 0 ) ) |
|
| 37 | 35 36 | anbi12d | |- ( K = 0 -> ( ( M || K /\ N || K ) <-> ( M || 0 /\ N || 0 ) ) ) |
| 38 | breq2 | |- ( K = 0 -> ( ( M lcm N ) || K <-> ( M lcm N ) || 0 ) ) |
|
| 39 | 37 38 | imbi12d | |- ( K = 0 -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) ) |
| 40 | 39 | adantl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) <-> ( ( M || 0 /\ N || 0 ) -> ( M lcm N ) || 0 ) ) ) |
| 41 | 34 40 | mpbird | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 42 | 41 | adantrl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 43 | 42 | adantllr | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 44 | 43 | adantlrr | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 45 | 44 | anassrs | |- ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 46 | nnabscl | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
|
| 47 | nnabscl | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
|
| 48 | nnabscl | |- ( ( K e. ZZ /\ K =/= 0 ) -> ( abs ` K ) e. NN ) |
|
| 49 | lcmgcdlem | |- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) /\ ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) ) |
|
| 50 | 49 | simprd | |- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( abs ` K ) e. NN /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 51 | 48 50 | sylani | |- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 52 | 46 47 51 | syl2an | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( ( K e. ZZ /\ K =/= 0 ) /\ ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 53 | 52 | expdimp | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) ) |
| 54 | dvdsabsb | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> M || ( abs ` K ) ) ) |
|
| 55 | zabscl | |- ( K e. ZZ -> ( abs ` K ) e. ZZ ) |
|
| 56 | absdvdsb | |- ( ( M e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) ) |
|
| 57 | 55 56 | sylan2 | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || ( abs ` K ) <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 58 | 54 57 | bitrd | |- ( ( M e. ZZ /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 59 | 58 | adantlr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( M || K <-> ( abs ` M ) || ( abs ` K ) ) ) |
| 60 | dvdsabsb | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> N || ( abs ` K ) ) ) |
|
| 61 | absdvdsb | |- ( ( N e. ZZ /\ ( abs ` K ) e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) ) |
|
| 62 | 55 61 | sylan2 | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || ( abs ` K ) <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 63 | 60 62 | bitrd | |- ( ( N e. ZZ /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 64 | 63 | adantll | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( N || K <-> ( abs ` N ) || ( abs ` K ) ) ) |
| 65 | 59 64 | anbi12d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) <-> ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) ) ) |
| 66 | 65 | bicomd | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) <-> ( M || K /\ N || K ) ) ) |
| 67 | lcmabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) |
|
| 68 | 67 | breq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 69 | 68 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 70 | dvdsabsb | |- ( ( ( M lcm N ) e. ZZ /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) ) |
|
| 71 | 30 70 | sylan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( M lcm N ) || K <-> ( M lcm N ) || ( abs ` K ) ) ) |
| 72 | 69 71 | bitr4d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) <-> ( M lcm N ) || K ) ) |
| 73 | 66 72 | imbi12d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 74 | 73 | adantrr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 75 | 74 | adantllr | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ N e. ZZ ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 76 | 75 | adantlrr | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( ( ( abs ` M ) || ( abs ` K ) /\ ( abs ` N ) || ( abs ` K ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || ( abs ` K ) ) <-> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 77 | 53 76 | mpbid | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ ( K e. ZZ /\ K =/= 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 78 | 77 | anassrs | |- ( ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) /\ K =/= 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 79 | 45 78 | pm2.61dane | |- ( ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) /\ K e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |
| 80 | 79 | ex | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 81 | 80 | an4s | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 82 | 28 81 | sylan2br | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( K e. ZZ -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 83 | 82 | impancom | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 84 | 83 | 3impa | |- ( ( M e. ZZ /\ N e. ZZ /\ K e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 85 | 84 | 3comr | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ N = 0 ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) ) |
| 86 | 16 27 85 | ecase3d | |- ( ( K e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) || K ) ) |