This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong form of dvdsval2 for positive integers. (Contributed by Stefan O'Rear, 13-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndivdvds | |- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( A / B ) e. NN ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnz | |- ( B e. NN -> B e. ZZ ) |
|
| 2 | nnne0 | |- ( B e. NN -> B =/= 0 ) |
|
| 3 | nnz | |- ( A e. NN -> A e. ZZ ) |
|
| 4 | 3 | adantr | |- ( ( A e. NN /\ B e. NN ) -> A e. ZZ ) |
| 5 | dvdsval2 | |- ( ( B e. ZZ /\ B =/= 0 /\ A e. ZZ ) -> ( B || A <-> ( A / B ) e. ZZ ) ) |
|
| 6 | 1 2 4 5 | syl2an23an | |- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( A / B ) e. ZZ ) ) |
| 7 | 6 | anbi1d | |- ( ( A e. NN /\ B e. NN ) -> ( ( B || A /\ 0 < ( A / B ) ) <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) ) |
| 8 | nnre | |- ( A e. NN -> A e. RR ) |
|
| 9 | 8 | adantr | |- ( ( A e. NN /\ B e. NN ) -> A e. RR ) |
| 10 | nnre | |- ( B e. NN -> B e. RR ) |
|
| 11 | 10 | adantl | |- ( ( A e. NN /\ B e. NN ) -> B e. RR ) |
| 12 | nngt0 | |- ( A e. NN -> 0 < A ) |
|
| 13 | 12 | adantr | |- ( ( A e. NN /\ B e. NN ) -> 0 < A ) |
| 14 | nngt0 | |- ( B e. NN -> 0 < B ) |
|
| 15 | 14 | adantl | |- ( ( A e. NN /\ B e. NN ) -> 0 < B ) |
| 16 | 9 11 13 15 | divgt0d | |- ( ( A e. NN /\ B e. NN ) -> 0 < ( A / B ) ) |
| 17 | 16 | biantrud | |- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( B || A /\ 0 < ( A / B ) ) ) ) |
| 18 | elnnz | |- ( ( A / B ) e. NN <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) |
|
| 19 | 18 | a1i | |- ( ( A e. NN /\ B e. NN ) -> ( ( A / B ) e. NN <-> ( ( A / B ) e. ZZ /\ 0 < ( A / B ) ) ) ) |
| 20 | 7 17 19 | 3bitr4d | |- ( ( A e. NN /\ B e. NN ) -> ( B || A <-> ( A / B ) e. NN ) ) |