This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the gcd operator. (Contributed by Thierry Arnoux, 2-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdnncl | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( M e. NN /\ N e. NN ) -> M e. NN ) |
|
| 2 | 1 | nnzd | |- ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) |
| 3 | simpr | |- ( ( M e. NN /\ N e. NN ) -> N e. NN ) |
|
| 4 | 3 | nnzd | |- ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) |
| 5 | 3 | nnne0d | |- ( ( M e. NN /\ N e. NN ) -> N =/= 0 ) |
| 6 | 5 | neneqd | |- ( ( M e. NN /\ N e. NN ) -> -. N = 0 ) |
| 7 | 6 | intnand | |- ( ( M e. NN /\ N e. NN ) -> -. ( M = 0 /\ N = 0 ) ) |
| 8 | gcdn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 /\ N = 0 ) ) -> ( M gcd N ) e. NN ) |
|
| 9 | 2 4 7 8 | syl21anc | |- ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) |